Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from huggingface_hub import from_pretrained_keras | |
def loss(margin=1): | |
"""Provides 'constrastive_loss' an enclosing scope with variable 'margin'. | |
Arguments: | |
margin: Integer, defines the baseline for distance for which pairs | |
should be classified as dissimilar. - (default is 1). | |
Returns: | |
'constrastive_loss' function with data ('margin') attached. | |
""" | |
# Contrastive loss = mean( (1-true_value) * square(prediction) + | |
# true_value * square( max(margin-prediction, 0) )) | |
def contrastive_loss(y_true, y_pred): | |
"""Calculates the constrastive loss. | |
Arguments: | |
y_true: List of labels, each label is of type float32. | |
y_pred: List of predictions of same length as of y_true, | |
each label is of type float32. | |
Returns: | |
A tensor containing constrastive loss as floating point value. | |
""" | |
square_pred = tf.math.square(y_pred) | |
margin_square = tf.math.square(tf.math.maximum(margin - (y_pred), 0)) | |
return tf.math.reduce_mean( | |
(1 - y_true) * square_pred + (y_true) * margin_square | |
) | |
return contrastive_loss | |
siamese = from_pretrained_keras("keras-io/siamese-contrastive", custom_objects={"contrastive_loss": loss}) | |
def predict_image(img1, img2): | |
assert img1.shape == (28, 28) | |
assert img1.shape == img2.shape | |
print('img 1 shape', img1.shape) | |
img1 = np.expand_dims(img1, 0) | |
img2 = np.expand_dims(img2, 0) | |
lab = str(siamese.predict([img1, img2])[0][0]) | |
return lab | |
title = "Image similarity estimation using a Siamese Network with a contrastive loss" | |
description = "This space implements a siamese network to compare similar images of the MNIST dataset. To use it simply draw two numbers in the input boxes." | |
article = """<p style='text-align: center'> | |
<a href='https://keras.io/examples/vision/siamese_contrastive/' target='_blank'>Keras Example given by Mehdi</a> | |
<br> | |
Space by @rushic24 | |
</p> | |
""" | |
iface = gr.Interface(predict_image, inputs=["sketchpad", "sketchpad"], outputs="label", title=title, description=description, article=article) | |
iface.launch(debug='True') |