import gradio as gr import numpy as np from huggingface_hub import from_pretrained_keras def loss(margin=1): """Provides 'constrastive_loss' an enclosing scope with variable 'margin'. Arguments: margin: Integer, defines the baseline for distance for which pairs should be classified as dissimilar. - (default is 1). Returns: 'constrastive_loss' function with data ('margin') attached. """ # Contrastive loss = mean( (1-true_value) * square(prediction) + # true_value * square( max(margin-prediction, 0) )) def contrastive_loss(y_true, y_pred): """Calculates the constrastive loss. Arguments: y_true: List of labels, each label is of type float32. y_pred: List of predictions of same length as of y_true, each label is of type float32. Returns: A tensor containing constrastive loss as floating point value. """ square_pred = tf.math.square(y_pred) margin_square = tf.math.square(tf.math.maximum(margin - (y_pred), 0)) return tf.math.reduce_mean( (1 - y_true) * square_pred + (y_true) * margin_square ) return contrastive_loss siamese = from_pretrained_keras("keras-io/siamese-contrastive", custom_objects={"contrastive_loss": loss}) def predict_image(img1, img2): assert img1.shape == (28, 28) assert img1.shape == img2.shape print('img 1 shape', img1.shape) img1 = np.expand_dims(img1, 0) img2 = np.expand_dims(img2, 0) lab = str(siamese.predict([img1, img2])[0][0]) return lab title = "Image similarity estimation using a Siamese Network with a contrastive loss" description = "This space implements a siamese network to compare similar images of the MNIST dataset. To use it simply draw two numbers in the input boxes." article = """
Keras Example given by Mehdi
Space by @rushic24