import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "NFL Object Detection" models_ids = ['keremberke/yolov5n-nfl', 'keremberke/yolov5s-nfl', 'keremberke/yolov5m-nfl'] article = f"

huggingface.co/{models_ids[-1]} | huggingface.co/keremberke/nfl-object-detection | awesome-yolov5-models

" current_model_id = models_ids[-1] model = yolov5.load(current_model_id) examples = [['test_images/57638_001089_Endzone_frame262_jpg.rf.4a34e04af4f7b46c8dd9454e34740317.jpg', 0.25, 'keremberke/yolov5m-nfl'], ['test_images/57660_001234_Endzone_frame0845_jpg.rf.745d52b49774ae36d821d752435c8481.jpg', 0.25, 'keremberke/yolov5m-nfl'], ['test_images/57848_002061_Sideline_frame0529_jpg.rf.3747d55691fd4bd0ca5f26e713531f6e.jpg', 0.25, 'keremberke/yolov5m-nfl'], ['test_images/57873_003005_Endzone_frame356_jpg.rf.5f45decabc82c2f9c102bfe4200ece25.jpg', 0.25, 'keremberke/yolov5m-nfl'], ['test_images/57928_002004_Sideline_frame0820_jpg.rf.31445da39fd67e4455b8107cbe7918f5.jpg', 0.25, 'keremberke/yolov5m-nfl'], ['test_images/58037_001432_Sideline_frame386_jpg.rf.0e72f6bd6a685a8149467eeb50184c56.jpg', 0.25, 'keremberke/yolov5m-nfl']] def predict(image, threshold=0.25, model_id=None): # update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] # perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="Created by 'keremberke'", article=article, fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else False, ).launch(enable_queue=True)