import gradio as gr import edge_tts import asyncio import tempfile # Get all available voices async def get_voices(): voices = await edge_tts.list_voices() return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices} # Text-to-speech function async def text_to_speech(text, voice, rate, pitch): if not text.strip(): return None, "Please enter text to convert." if not voice: return None, "Please select a voice." voice_short_name = voice.split(" - ")[0] rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path, None # Gradio interface function def tts_interface(text, voice, rate, pitch): # Run the text_to_speech function within the Gradio interface audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch)) return audio, warning # Create Gradio application async def create_demo(): voices = await get_voices() description = """ Experience the power of Voicecloning.be for text-to-speech conversion. """ demo = gr.Interface( fn=tts_interface, inputs=[ gr.Textbox(label="Input Text", lines=5), gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""), gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1), gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1) ], outputs=[ gr.Audio(label="Generated Audio", type="filepath"), gr.Markdown(label="Warning", visible=False) ], title="Voicecloning.be Text-to-Speech", description=description, article="Experience the power of Voicecloning.be for text-to-speech conversion.", analytics_enabled=False, allow_flagging=False, share=True # Make the Gradio app shareable with a public link ) return demo # Run the application if __name__ == "__main__": demo = asyncio.run(create_demo()) demo.launch(share=True)