File size: 13,008 Bytes
be9690e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random

import pyarrow.parquet as pq
from io import BytesIO
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F

torchaudio.set_audio_backend('soundfile')

AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])


def parquet_opener(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        url = sample['src']
        try:
            df = pq.read_table(url).to_pandas()
            for i in range(len(df)):
                if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
                    continue
                sample.update(dict(df.loc[i]))
                if mode == 'train':
                    # NOTE do not return sample directly, must initialize a new dict
                    yield {**sample}
                else:
                    for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
                        yield {**sample, 'tts_index': index, 'tts_text': text}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(url, ex))

def filter(data,
           max_length=10240,
           min_length=10,
           token_max_length=200,
           token_min_length=1,
           min_output_input_ratio=0.0005,
           max_output_input_ratio=1,
           mode='train'):
    """ Filter sample according to feature and label length
        Inplace operation.

        Args::
            data: Iterable[{key, wav, label, sample_rate}]
            max_length: drop utterance which is greater than max_length(10ms)
            min_length: drop utterance which is less than min_length(10ms)
            token_max_length: drop utterance which is greater than
                token_max_length, especially when use char unit for
                english modeling
            token_min_length: drop utterance which is
                less than token_max_length
            min_output_input_ratio: minimal ration of
                token_length / feats_length(10ms)
            max_output_input_ratio: maximum ration of
                token_length / feats_length(10ms)

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
        del sample['audio_data']
        # sample['wav'] is torch.Tensor, we have 100 frames every second
        num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
        if num_frames < min_length:
            continue
        if num_frames > max_length:
            continue
        if len(sample['text_token']) < token_min_length:
            continue
        if len(sample['text_token']) > token_max_length:
            continue
        if len(sample['speech_token']) == 0:
            continue
        if num_frames != 0:
            if len(sample['text_token']) / num_frames < min_output_input_ratio:
                continue
            if len(sample['text_token']) / num_frames > max_output_input_ratio:
                continue
        yield sample


def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
    """ Resample data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            resample_rate: target resample rate

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'speech' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['speech']
        if sample_rate != resample_rate:
            if sample_rate < min_sample_rate:
                continue
            sample['sample_rate'] = resample_rate
            sample['speech'] = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=resample_rate)(waveform)
        max_val = sample['speech'].abs().max()
        if max_val > 1:
            sample['speech'] /= max_val
        yield sample


def compute_fbank(data,
                  feat_extractor,
                  mode='train'):
    """ Extract fbank

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'speech' in sample
        assert 'utt' in sample
        assert 'text_token' in sample
        waveform = sample['speech']
        mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
        sample['speech_feat'] = mat
        del sample['speech']
        yield sample


def parse_embedding(data, normalize, mode='train'):
    """ Parse utt_embedding/spk_embedding

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
        sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
        if normalize:
            sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
            sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
        yield sample


def tokenize(data, get_tokenizer, allowed_special, mode='train'):
    """ Decode text to chars or BPE
        Inplace operation

        Args:
            data: Iterable[{key, wav, txt, sample_rate}]

        Returns:
            Iterable[{key, wav, txt, tokens, label, sample_rate}]
    """
    tokenizer = get_tokenizer()
    for sample in data:
        assert 'text' in sample
        sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
        if mode == 'inference':
            sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
        yield sample


def shuffle(data, shuffle_size=10000, mode='train'):
    """ Local shuffle the data

        Args:
            data: Iterable[{key, feat, label}]
            shuffle_size: buffer size for shuffle

        Returns:
            Iterable[{key, feat, label}]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= shuffle_size:
            random.shuffle(buf)
            for x in buf:
                yield x
            buf = []
    # The sample left over
    random.shuffle(buf)
    for x in buf:
        yield x


def sort(data, sort_size=500, mode='train'):
    """ Sort the data by feature length.
        Sort is used after shuffle and before batch, so we can group
        utts with similar lengths into a batch, and `sort_size` should
        be less than `shuffle_size`

        Args:
            data: Iterable[{key, feat, label}]
            sort_size: buffer size for sort

        Returns:
            Iterable[{key, feat, label}]
    """

    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= sort_size:
            buf.sort(key=lambda x: x['speech_feat'].size(0))
            for x in buf:
                yield x
            buf = []
    # The sample left over
    buf.sort(key=lambda x: x['speech_feat'].size(0))
    for x in buf:
        yield x


def static_batch(data, batch_size=16):
    """ Static batch the data by `batch_size`

        Args:
            data: Iterable[{key, feat, label}]
            batch_size: batch size

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= batch_size:
            yield buf
            buf = []
    if len(buf) > 0:
        yield buf


def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
    """ Dynamic batch the data until the total frames in batch
        reach `max_frames_in_batch`

        Args:
            data: Iterable[{key, feat, label}]
            max_frames_in_batch: max_frames in one batch

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    longest_frames = 0
    for sample in data:
        assert 'speech_feat' in sample
        assert isinstance(sample['speech_feat'], torch.Tensor)
        new_sample_frames = sample['speech_feat'].size(0)
        longest_frames = max(longest_frames, new_sample_frames)
        frames_after_padding = longest_frames * (len(buf) + 1)
        if frames_after_padding > max_frames_in_batch:
            yield buf
            buf = [sample]
            longest_frames = new_sample_frames
        else:
            buf.append(sample)
    if len(buf) > 0:
        yield buf


def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
    """ Wrapper for static/dynamic batch
    """
    if mode == 'inference':
        return static_batch(data, 1)
    else:
        if batch_type == 'static':
            return static_batch(data, batch_size)
        elif batch_type == 'dynamic':
            return dynamic_batch(data, max_frames_in_batch)
        else:
            logging.fatal('Unsupported batch type {}'.format(batch_type))


def padding(data, use_spk_embedding, mode='train'):
    """ Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
    for sample in data:
        assert isinstance(sample, list)
        speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
                                       dtype=torch.int32)
        order = torch.argsort(speech_feat_len, descending=True)

        utts = [sample[i]['utt'] for i in order]
        speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
        speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
        speech_token = pad_sequence(speech_token,
                                    batch_first=True,
                                    padding_value=0)
        speech_feat = [sample[i]['speech_feat'] for i in order]
        speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
        speech_feat = pad_sequence(speech_feat,
                                   batch_first=True,
                                   padding_value=0)
        text = [sample[i]['text'] for i in order]
        text_token = [torch.tensor(sample[i]['text_token']) for i in order]
        text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
        text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
        utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
        spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
        batch = {
            "utts": utts,
            "speech_token": speech_token,
            "speech_token_len": speech_token_len,
            "speech_feat": speech_feat,
            "speech_feat_len": speech_feat_len,
            "text": text,
            "text_token": text_token,
            "text_token_len": text_token_len,
            "utt_embedding": utt_embedding,
            "spk_embedding": spk_embedding,
        }
        if mode == 'inference':
            tts_text = [sample[i]['tts_text'] for i in order]
            tts_index = [sample[i]['tts_index'] for i in order]
            tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
            tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
            tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
            batch.update({'tts_text': tts_text,
                          'tts_index': tts_index,
                          'tts_text_token': tts_text_token,
                          'tts_text_token_len': tts_text_token_len})
        if use_spk_embedding is True:
            batch["embedding"] = batch["spk_embedding"]
        else:
            batch["embedding"] = batch["utt_embedding"]
        yield batch