File size: 9,184 Bytes
be9690e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Union
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice.utils.common import IGNORE_ID
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice.utils.common import th_accuracy


class TransformerLM(torch.nn.Module):
    def __init__(
            self,
            text_encoder_input_size: int,
            llm_input_size: int,
            llm_output_size: int,
            text_token_size: int,
            speech_token_size: int,
            text_encoder: torch.nn.Module,
            llm: torch.nn.Module,
            length_normalized_loss: bool = True,
            lsm_weight: float = 0.0,
            spk_embed_dim: int = 192,
    ):
        super().__init__()
        self.llm_input_size = llm_input_size
        self.speech_token_size = speech_token_size
        # 1. build text token inputs related modules
        self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
        self.text_encoder = text_encoder
        self.text_encoder_affine_layer = nn.Linear(
            self.text_encoder.output_size(),
            llm_input_size
        )

        # 2. build speech token language model related modules
        self.sos_eos = 0
        self.task_id = 1
        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
        self.llm = llm
        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
        self.criterion_ce = LabelSmoothingLoss(
            size=speech_token_size + 1,
            padding_idx=IGNORE_ID,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )

        # 3. [Optional] build speech token related modules
        self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)

    def encode(
            self,
            text: torch.Tensor,
            text_lengths: torch.Tensor,
    ):
        encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        encoder_out = self.text_encoder_affine_layer(encoder_out)
        return encoder_out, encoder_out_lens

    def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
        lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
        return lm_input, lm_input_len

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """
        Args:
            text: (B, L, D)
            text_lengths: (B,)
            audio: (B, T, N) or (B, T)
            audio_lengths: (B,)
        """
        text_token = batch['text_token'].to(device)
        text_token_len = batch['text_token_len'].to(device)
        speech_token = batch['speech_token'].to(device)
        speech_token_len = batch['speech_token_len'].to(device)
        embedding = batch['embedding'].to(device)

        # 1. prepare llm_target
        lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)

        # 1. encode text_token
        text_token = self.text_embedding(text_token)
        text_token, text_token_len = self.encode(text_token, text_token_len)

        # 2. embedding projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)
        embedding = embedding.unsqueeze(1)

        # 3. eos and task_id
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

        # 4. encode speech_token
        speech_token = self.speech_embedding(speech_token)

        # 5. unpad and pad
        lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)

        # 6. run lm forward
        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
        logits = self.llm_decoder(lm_output)
        loss = self.criterion_ce(logits, lm_target)
        acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
        return {'loss': loss, 'acc': acc}

    def sampling_ids(
            self,
            weighted_scores: torch.Tensor,
            sampling: Union[bool, int, float] = True,
            beam_size: int = 1,
            ignore_eos: bool = True,
    ):
        while True:
            prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
            top_ids = prob.multinomial(beam_size, replacement=True)
            top_ids = indices[top_ids]
            if (not ignore_eos) or (self.speech_token_size not in top_ids):
                break
        return top_ids

    @torch.inference_mode()
    def inference(
            self,
            text: torch.Tensor,
            text_len: torch.Tensor,
            prompt_text: torch.Tensor,
            prompt_text_len: torch.Tensor,
            prompt_speech_token: torch.Tensor,
            prompt_speech_token_len: torch.Tensor,
            embedding: torch.Tensor,
            beam_size: int = 1,
            sampling: int = 25,
            max_token_text_ratio: float = 20,
            min_token_text_ratio: float = 2,
    ) -> torch.Tensor:
        device = text.device
        text = torch.concat([prompt_text, text], dim=1)
        text_len += prompt_text_len
        text = self.text_embedding(text)

        # 1. encode text
        text, text_len = self.encode(text, text_len)

        # 2. encode embedding
        if embedding.shape[0] != 0:
            embedding = F.normalize(embedding, dim=1)
            embedding = self.spk_embed_affine_layer(embedding)
            embedding = embedding.unsqueeze(dim=1)
        else:
            embedding = torch.zeros(1, 0, self.llm_input_size).to(device)

        # 3. concat llm_input
        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
        if prompt_speech_token_len != 0:
            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
        else:
            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
        lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)

        # 4. cal min/max_length
        min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
        max_len = int((text_len - prompt_text_len) * max_token_text_ratio)

        # 5. step by step decode
        out_tokens = []
        offset = 0
        att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
        for i in range(max_len):
            y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
                                                                  att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
            top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
            if top_ids == self.speech_token_size:
                break
            out_tokens.append(top_ids)
            offset += lm_input.size(1)
            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

        return torch.tensor([out_tokens], dtype=torch.int64, device=device)