File size: 8,664 Bytes
be9690e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
<div align="center">

# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching

### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)

[![python](https://img.shields.io/badge/-Python_3.10-blue?logo=python&logoColor=white)](https://www.python.org/downloads/release/python-3100/)
[![pytorch](https://img.shields.io/badge/PyTorch_2.0+-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/get-started/locally/)
[![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://pytorchlightning.ai/)
[![hydra](https://img.shields.io/badge/Config-Hydra_1.3-89b8cd)](https://hydra.cc/)
[![black](https://img.shields.io/badge/Code%20Style-Black-black.svg?labelColor=gray)](https://black.readthedocs.io/en/stable/)
[![isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)

<p style="text-align: center;">
  <img src="https://shivammehta25.github.io/Matcha-TTS/images/logo.png" height="128"/>
</p>

</div>

> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].

We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:

- Is probabilistic
- Has compact memory footprint
- Sounds highly natural
- Is very fast to synthesise from

Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.

[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.

You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).

## Teaser video

[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)

## Installation

1. Create an environment (suggested but optional)

```
conda create -n matcha-tts python=3.10 -y
conda activate matcha-tts
```

2. Install Matcha TTS using pip or from source

```bash
pip install matcha-tts
```

from source

```bash
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
pip install -e .
```

3. Run CLI / gradio app / jupyter notebook

```bash
# This will download the required models
matcha-tts --text "<INPUT TEXT>"
```

or

```bash
matcha-tts-app
```

or open `synthesis.ipynb` on jupyter notebook

### CLI Arguments

- To synthesise from given text, run:

```bash
matcha-tts --text "<INPUT TEXT>"
```

- To synthesise from a file, run:

```bash
matcha-tts --file <PATH TO FILE>
```

- To batch synthesise from a file, run:

```bash
matcha-tts --file <PATH TO FILE> --batched
```

Additional arguments

- Speaking rate

```bash
matcha-tts --text "<INPUT TEXT>" --speaking_rate 1.0
```

- Sampling temperature

```bash
matcha-tts --text "<INPUT TEXT>" --temperature 0.667
```

- Euler ODE solver steps

```bash
matcha-tts --text "<INPUT TEXT>" --steps 10
```

## Train with your own dataset

Let's assume we are training with LJ Speech

1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).

2. Clone and enter the Matcha-TTS repository

```bash
git clone https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
```

3. Install the package from source

```bash
pip install -e .
```

4. Go to `configs/data/ljspeech.yaml` and change

```yaml
train_filelist_path: data/filelists/ljs_audio_text_train_filelist.txt
valid_filelist_path: data/filelists/ljs_audio_text_val_filelist.txt
```

5. Generate normalisation statistics with the yaml file of dataset configuration

```bash
matcha-data-stats -i ljspeech.yaml
# Output:
#{'mel_mean': -5.53662231756592, 'mel_std': 2.1161014277038574}
```

Update these values in `configs/data/ljspeech.yaml` under `data_statistics` key.

```bash
data_statistics:  # Computed for ljspeech dataset
  mel_mean: -5.536622
  mel_std: 2.116101
```

to the paths of your train and validation filelists.

6. Run the training script

```bash
make train-ljspeech
```

or

```bash
python matcha/train.py experiment=ljspeech
```

- for a minimum memory run

```bash
python matcha/train.py experiment=ljspeech_min_memory
```

- for multi-gpu training, run

```bash
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
```

7. Synthesise from the custom trained model

```bash
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
```

## ONNX support

> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.

It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.

### ONNX export

To export a checkpoint to ONNX, first install ONNX with

```bash
pip install onnx
```

then run the following:

```bash
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
```

Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).

**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.

**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.

### ONNX Inference

To run inference on the exported model, first install `onnxruntime` using

```bash
pip install onnxruntime
pip install onnxruntime-gpu  # for GPU inference
```

then use the following:

```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
```

You can also control synthesis parameters:

```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
```

To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:

```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
```

If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.

If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:

```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
```

This will write `.wav` audio files to the output directory.

## Citation information

If you use our code or otherwise find this work useful, please cite our paper:

```text
@inproceedings{mehta2024matcha,
  title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
  author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
  booktitle={Proc. ICASSP},
  year={2024}
}
```

## Acknowledgements

Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.

Other source code we would like to acknowledge:

- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation