File size: 11,316 Bytes
be9690e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#               2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Positonal Encoding Module."""

import math
from typing import Tuple, Union

import torch
import torch.nn.functional as F
import numpy as np


class PositionalEncoding(torch.nn.Module):
    """Positional encoding.

    :param int d_model: embedding dim
    :param float dropout_rate: dropout rate
    :param int max_len: maximum input length

    PE(pos, 2i)   = sin(pos/(10000^(2i/dmodel)))
    PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
    """

    def __init__(self,
                 d_model: int,
                 dropout_rate: float,
                 max_len: int = 5000,
                 reverse: bool = False):
        """Construct an PositionalEncoding object."""
        super().__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.max_len = max_len

        self.pe = torch.zeros(self.max_len, self.d_model)
        position = torch.arange(0, self.max_len,
                                dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32) *
            -(math.log(10000.0) / self.d_model))
        self.pe[:, 0::2] = torch.sin(position * div_term)
        self.pe[:, 1::2] = torch.cos(position * div_term)
        self.pe = self.pe.unsqueeze(0)

    def forward(self,
                x: torch.Tensor,
                offset: Union[int, torch.Tensor] = 0) \
            -> Tuple[torch.Tensor, torch.Tensor]:
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input. Its shape is (batch, time, ...)
            offset (int, torch.tensor): position offset

        Returns:
            torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
            torch.Tensor: for compatibility to RelPositionalEncoding
        """

        self.pe = self.pe.to(x.device)
        pos_emb = self.position_encoding(offset, x.size(1), False)
        x = x * self.xscale + pos_emb
        return self.dropout(x), self.dropout(pos_emb)

    def position_encoding(self,
                          offset: Union[int, torch.Tensor],
                          size: int,
                          apply_dropout: bool = True) -> torch.Tensor:
        """ For getting encoding in a streaming fashion

        Attention!!!!!
        we apply dropout only once at the whole utterance level in a none
        streaming way, but will call this function several times with
        increasing input size in a streaming scenario, so the dropout will
        be applied several times.

        Args:
            offset (int or torch.tensor): start offset
            size (int): required size of position encoding

        Returns:
            torch.Tensor: Corresponding encoding
        """
        # How to subscript a Union type:
        #   https://github.com/pytorch/pytorch/issues/69434
        if isinstance(offset, int):
            assert offset + size <= self.max_len
            pos_emb = self.pe[:, offset:offset + size]
        elif isinstance(offset, torch.Tensor) and offset.dim() == 0:  # scalar
            assert offset + size <= self.max_len
            pos_emb = self.pe[:, offset:offset + size]
        else:  # for batched streaming decoding on GPU
            assert torch.max(offset) + size <= self.max_len
            index = offset.unsqueeze(1) + \
                torch.arange(0, size).to(offset.device)  # B X T
            flag = index > 0
            # remove negative offset
            index = index * flag
            pos_emb = F.embedding(index, self.pe[0])  # B X T X d_model

        if apply_dropout:
            pos_emb = self.dropout(pos_emb)
        return pos_emb


class RelPositionalEncoding(PositionalEncoding):
    """Relative positional encoding module.
    See : Appendix B in https://arxiv.org/abs/1901.02860
    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.
    """

    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
        """Initialize class."""
        super().__init__(d_model, dropout_rate, max_len, reverse=True)

    def forward(self,
                x: torch.Tensor,
                offset: Union[int, torch.Tensor] = 0) \
            -> Tuple[torch.Tensor, torch.Tensor]:
        """Compute positional encoding.
        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).
        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).
            torch.Tensor: Positional embedding tensor (1, time, `*`).
        """
        self.pe = self.pe.to(x.device)
        x = x * self.xscale
        pos_emb = self.position_encoding(offset, x.size(1), False)
        return self.dropout(x), self.dropout(pos_emb)


class WhisperPositionalEncoding(PositionalEncoding):
    """ Sinusoids position encoding used in openai-whisper.encoder
    """

    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
        super().__init__(d_model, dropout_rate, max_len)
        self.xscale = 1.0
        log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
        inv_timescales = torch.exp(-log_timescale_increment *
                                   torch.arange(d_model // 2))
        scaled_time = torch.arange(max_len)[:, np.newaxis] * \
            inv_timescales[np.newaxis, :]
        pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
        delattr(self, "pe")
        self.register_buffer("pe", pe.unsqueeze(0))


class LearnablePositionalEncoding(PositionalEncoding):
    """ Learnable position encoding used in openai-whisper.decoder
    """

    def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
        super().__init__(d_model, dropout_rate, max_len)
        # NOTE(xcsong): overwrite self.pe & self.xscale
        self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
        self.xscale = 1.0


class NoPositionalEncoding(torch.nn.Module):
    """ No position encoding
    """

    def __init__(self, d_model: int, dropout_rate: float):
        super().__init__()
        self.d_model = d_model
        self.dropout = torch.nn.Dropout(p=dropout_rate)

    def forward(self,
                x: torch.Tensor,
                offset: Union[int, torch.Tensor] = 0) \
            -> Tuple[torch.Tensor, torch.Tensor]:
        """ Just return zero vector for interface compatibility
        """
        pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
        return self.dropout(x), pos_emb

    def position_encoding(self, offset: Union[int, torch.Tensor],
                          size: int) -> torch.Tensor:
        return torch.zeros(1, size, self.d_model)


class EspnetRelPositionalEncoding(torch.nn.Module):
    """Relative positional encoding module (new implementation).

    Details can be found in https://github.com/espnet/espnet/pull/2816.

    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Construct an PositionalEncoding object."""
        super(EspnetRelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = torch.zeros(x.size(1), self.d_model)
        pe_negative = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0):
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.position_encoding(size=x.size(1), offset=offset)
        return self.dropout(x), self.dropout(pos_emb)

    def position_encoding(self,
                          offset: Union[int, torch.Tensor],
                          size: int) -> torch.Tensor:
        """ For getting encoding in a streaming fashion

        Attention!!!!!
        we apply dropout only once at the whole utterance level in a none
        streaming way, but will call this function several times with
        increasing input size in a streaming scenario, so the dropout will
        be applied several times.

        Args:
            offset (int or torch.tensor): start offset
            size (int): required size of position encoding

        Returns:
            torch.Tensor: Corresponding encoding
        """
        pos_emb = self.pe[
            :,
            self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
        ]
        return pos_emb