Spaces:
Runtime error
Runtime error
File size: 7,159 Bytes
be9690e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import sys
import warnings
from importlib.util import find_spec
from pathlib import Path
from typing import Any, Callable, Dict, Tuple
import gdown
import matplotlib.pyplot as plt
import numpy as np
import torch
import wget
from omegaconf import DictConfig
from matcha.utils import pylogger, rich_utils
log = pylogger.get_pylogger(__name__)
def extras(cfg: DictConfig) -> None:
"""Applies optional utilities before the task is started.
Utilities:
- Ignoring python warnings
- Setting tags from command line
- Rich config printing
:param cfg: A DictConfig object containing the config tree.
"""
# return if no `extras` config
if not cfg.get("extras"):
log.warning("Extras config not found! <cfg.extras=null>")
return
# disable python warnings
if cfg.extras.get("ignore_warnings"):
log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
warnings.filterwarnings("ignore")
# prompt user to input tags from command line if none are provided in the config
if cfg.extras.get("enforce_tags"):
log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
rich_utils.enforce_tags(cfg, save_to_file=True)
# pretty print config tree using Rich library
if cfg.extras.get("print_config"):
log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
def task_wrapper(task_func: Callable) -> Callable:
"""Optional decorator that controls the failure behavior when executing the task function.
This wrapper can be used to:
- make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
- save the exception to a `.log` file
- mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
- etc. (adjust depending on your needs)
Example:
```
@utils.task_wrapper
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
...
return metric_dict, object_dict
```
:param task_func: The task function to be wrapped.
:return: The wrapped task function.
"""
def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
# execute the task
try:
metric_dict, object_dict = task_func(cfg=cfg)
# things to do if exception occurs
except Exception as ex:
# save exception to `.log` file
log.exception("")
# some hyperparameter combinations might be invalid or cause out-of-memory errors
# so when using hparam search plugins like Optuna, you might want to disable
# raising the below exception to avoid multirun failure
raise ex
# things to always do after either success or exception
finally:
# display output dir path in terminal
log.info(f"Output dir: {cfg.paths.output_dir}")
# always close wandb run (even if exception occurs so multirun won't fail)
if find_spec("wandb"): # check if wandb is installed
import wandb
if wandb.run:
log.info("Closing wandb!")
wandb.finish()
return metric_dict, object_dict
return wrap
def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
"""Safely retrieves value of the metric logged in LightningModule.
:param metric_dict: A dict containing metric values.
:param metric_name: The name of the metric to retrieve.
:return: The value of the metric.
"""
if not metric_name:
log.info("Metric name is None! Skipping metric value retrieval...")
return None
if metric_name not in metric_dict:
raise ValueError(
f"Metric value not found! <metric_name={metric_name}>\n"
"Make sure metric name logged in LightningModule is correct!\n"
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
)
metric_value = metric_dict[metric_name].item()
log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
return metric_value
def intersperse(lst, item):
# Adds blank symbol
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def save_figure_to_numpy(fig):
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data
def plot_tensor(tensor):
plt.style.use("default")
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
data = save_figure_to_numpy(fig)
plt.close()
return data
def save_plot(tensor, savepath):
plt.style.use("default")
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.tight_layout()
fig.canvas.draw()
plt.savefig(savepath)
plt.close()
def to_numpy(tensor):
if isinstance(tensor, np.ndarray):
return tensor
elif isinstance(tensor, torch.Tensor):
return tensor.detach().cpu().numpy()
elif isinstance(tensor, list):
return np.array(tensor)
else:
raise TypeError("Unsupported type for conversion to numpy array")
def get_user_data_dir(appname="matcha_tts"):
"""
Args:
appname (str): Name of application
Returns:
Path: path to user data directory
"""
MATCHA_HOME = os.environ.get("MATCHA_HOME")
if MATCHA_HOME is not None:
ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
elif sys.platform == "win32":
import winreg # pylint: disable=import-outside-toplevel
key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER,
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
)
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
ans = Path(dir_).resolve(strict=False)
elif sys.platform == "darwin":
ans = Path("~/Library/Application Support/").expanduser()
else:
ans = Path.home().joinpath(".local/share")
final_path = ans.joinpath(appname)
final_path.mkdir(parents=True, exist_ok=True)
return final_path
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
if Path(checkpoint_path).exists():
log.debug(f"[+] Model already present at {checkpoint_path}!")
print(f"[+] Model already present at {checkpoint_path}!")
return
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
print(f"[-] Model not found at {checkpoint_path}! Will download it")
checkpoint_path = str(checkpoint_path)
if not use_wget:
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
else:
wget.download(url=url, out=checkpoint_path)
|