File size: 21,385 Bytes
dd217c7
d24a68b
 
 
dd217c7
 
d24a68b
 
dd217c7
d24a68b
 
 
dd217c7
 
 
d24a68b
 
 
 
 
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
d24a68b
dd217c7
 
 
d24a68b
 
dd217c7
d24a68b
 
a674527
 
 
d24a68b
 
 
 
 
dd217c7
d24a68b
dd217c7
 
d24a68b
dd217c7
 
 
 
d24a68b
 
dd217c7
 
 
d24a68b
dd217c7
 
 
 
d24a68b
a674527
4446bbe
a674527
d24a68b
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d24a68b
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
d24a68b
dd217c7
 
 
a674527
 
 
 
 
 
 
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
a674527
d24a68b
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
 
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
dd217c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a674527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import re
import tempfile

import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from pydub import AudioSegment

from model import DiT, UNetT
from model.utils import (
    save_spectrogram,
)
from model.utils_infer import (
    load_vocoder,
    load_model,
    preprocess_ref_audio_text,
    infer_process,
    remove_silence_for_generated_wav,
)

try:
    import spaces
    USING_SPACES = True
except ImportError:
    USING_SPACES = False

def gpu_decorator(func):
    if USING_SPACES:
        return spaces.GPU(func)
    else:
        return func

vocos = load_vocoder()


# load models
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
F5TTS_ema_model = load_model(DiT, F5TTS_model_cfg, str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors")))

E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
E2TTS_ema_model = load_model(UNetT, E2TTS_model_cfg, str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors")))


@gpu_decorator
def infer(ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1):
    
    ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=gr.Info)

    if model == "F5-TTS":
        ema_model = F5TTS_ema_model
    elif model == "E2-TTS":
        ema_model = E2TTS_ema_model

    final_wave, final_sample_rate, combined_spectrogram = infer_process(ref_audio, ref_text, gen_text, ema_model, cross_fade_duration=cross_fade_duration, speed=speed, show_info=gr.Info, progress=gr.Progress())

    # Remove silence
    if remove_silence:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            sf.write(f.name, final_wave, final_sample_rate)
            remove_silence_for_generated_wav(f.name)
            final_wave, _ = torchaudio.load(f.name)
        final_wave = final_wave.squeeze().cpu().numpy()

    # Save the spectrogram
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
        spectrogram_path = tmp_spectrogram.name
        save_spectrogram(combined_spectrogram, spectrogram_path)

    return (final_sample_rate, final_wave), spectrogram_path


@gpu_decorator
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, model, remove_silence):
    # Split the script into speaker blocks
    speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
    speaker_blocks = speaker_pattern.split(script)[1:]  # Skip the first empty element
    
    generated_audio_segments = []
    
    for i in range(0, len(speaker_blocks), 2):
        speaker = speaker_blocks[i]
        text = speaker_blocks[i+1].strip()
        
        # Determine which speaker is talking
        if speaker == speaker1_name:
            ref_audio = ref_audio1
            ref_text = ref_text1
        elif speaker == speaker2_name:
            ref_audio = ref_audio2
            ref_text = ref_text2
        else:
            continue  # Skip if the speaker is neither speaker1 nor speaker2
        
        # Generate audio for this block
        audio, _ = infer(ref_audio, ref_text, text, model, remove_silence)
        
        # Convert the generated audio to a numpy array
        sr, audio_data = audio
        
        # Save the audio data as a WAV file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
            sf.write(temp_file.name, audio_data, sr)
            audio_segment = AudioSegment.from_wav(temp_file.name)
        
        generated_audio_segments.append(audio_segment)
        
        # Add a short pause between speakers
        pause = AudioSegment.silent(duration=500)  # 500ms pause
        generated_audio_segments.append(pause)
    
    # Concatenate all audio segments
    final_podcast = sum(generated_audio_segments)
    
    # Export the final podcast
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
        podcast_path = temp_file.name
        final_podcast.export(podcast_path, format="wav")
    
    return podcast_path

def parse_speechtypes_text(gen_text):
    # Pattern to find (Emotion)
    pattern = r'\((.*?)\)'

    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)

    segments = []

    current_emotion = 'Regular'

    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                segments.append({'emotion': current_emotion, 'text': text})
        else:
            # This is emotion
            emotion = tokens[i].strip()
            current_emotion = emotion

    return segments


with gr.Blocks() as app_credits:
    gr.Markdown("""
# Credits

* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation
""")
with gr.Blocks() as app_tts:
    gr.Markdown("# Batched TTS")
    ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
    gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
    model_choice = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )
    generate_btn = gr.Button("Synthesize", variant="primary")
    with gr.Accordion("Advanced Settings", open=False):
        ref_text_input = gr.Textbox(
            label="Reference Text",
            info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
            lines=2,
        )
        remove_silence = gr.Checkbox(
            label="Remove Silences",
            info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
            value=False,
        )
        speed_slider = gr.Slider(
            label="Speed",
            minimum=0.3,
            maximum=2.0,
            value=1.0,
            step=0.1,
            info="Adjust the speed of the audio.",
        )
        cross_fade_duration_slider = gr.Slider(
            label="Cross-Fade Duration (s)",
            minimum=0.0,
            maximum=1.0,
            value=0.15,
            step=0.01,
            info="Set the duration of the cross-fade between audio clips.",
        )

    audio_output = gr.Audio(label="Synthesized Audio")
    spectrogram_output = gr.Image(label="Spectrogram")

    generate_btn.click(
        infer,
        inputs=[
            ref_audio_input,
            ref_text_input,
            gen_text_input,
            model_choice,
            remove_silence,
            cross_fade_duration_slider,
            speed_slider,
        ],
        outputs=[audio_output, spectrogram_output],
    )
    
with gr.Blocks() as app_podcast:
    gr.Markdown("# Podcast Generation")
    speaker1_name = gr.Textbox(label="Speaker 1 Name")
    ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath")
    ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2)
    
    speaker2_name = gr.Textbox(label="Speaker 2 Name")
    ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath")
    ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2)
    
    script_input = gr.Textbox(label="Podcast Script", lines=10, 
                                placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...")
    
    podcast_model_choice = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )
    podcast_remove_silence = gr.Checkbox(
        label="Remove Silences",
        value=True,
    )
    generate_podcast_btn = gr.Button("Generate Podcast", variant="primary")
    podcast_output = gr.Audio(label="Generated Podcast")

    def podcast_generation(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence):
        return generate_podcast(script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence)

    generate_podcast_btn.click(
        podcast_generation,
        inputs=[
            script_input,
            speaker1_name,
            ref_audio_input1,
            ref_text_input1,
            speaker2_name,
            ref_audio_input2,
            ref_text_input2,
            podcast_model_choice,
            podcast_remove_silence,
        ],
        outputs=podcast_output,
    )

def parse_emotional_text(gen_text):
    # Pattern to find (Emotion)
    pattern = r'\((.*?)\)'

    # Split the text by the pattern
    tokens = re.split(pattern, gen_text)

    segments = []

    current_emotion = 'Regular'

    for i in range(len(tokens)):
        if i % 2 == 0:
            # This is text
            text = tokens[i].strip()
            if text:
                segments.append({'emotion': current_emotion, 'text': text})
        else:
            # This is emotion
            emotion = tokens[i].strip()
            current_emotion = emotion

    return segments

with gr.Blocks() as app_emotional:
    # New section for emotional generation
    gr.Markdown(
        """
    # Multiple Speech-Type Generation

    This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.

    **Example Input:**

    (Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
    """
    )

    gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")

    # Regular speech type (mandatory)
    with gr.Row():
        regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
        regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
        regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)

    # Additional speech types (up to 99 more)
    max_speech_types = 100
    speech_type_names = []
    speech_type_audios = []
    speech_type_ref_texts = []
    speech_type_delete_btns = []

    for i in range(max_speech_types - 1):
        with gr.Row():
            name_input = gr.Textbox(label='Speech Type Name', visible=False)
            audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
            ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
            delete_btn = gr.Button("Delete", variant="secondary", visible=False)
        speech_type_names.append(name_input)
        speech_type_audios.append(audio_input)
        speech_type_ref_texts.append(ref_text_input)
        speech_type_delete_btns.append(delete_btn)

    # Button to add speech type
    add_speech_type_btn = gr.Button("Add Speech Type")

    # Keep track of current number of speech types
    speech_type_count = gr.State(value=0)

    # Function to add a speech type
    def add_speech_type_fn(speech_type_count):
        if speech_type_count < max_speech_types - 1:
            speech_type_count += 1
            # Prepare updates for the components
            name_updates = []
            audio_updates = []
            ref_text_updates = []
            delete_btn_updates = []
            for i in range(max_speech_types - 1):
                if i < speech_type_count:
                    name_updates.append(gr.update(visible=True))
                    audio_updates.append(gr.update(visible=True))
                    ref_text_updates.append(gr.update(visible=True))
                    delete_btn_updates.append(gr.update(visible=True))
                else:
                    name_updates.append(gr.update())
                    audio_updates.append(gr.update())
                    ref_text_updates.append(gr.update())
                    delete_btn_updates.append(gr.update())
        else:
            # Optionally, show a warning
            # gr.Warning("Maximum number of speech types reached.")
            name_updates = [gr.update() for _ in range(max_speech_types - 1)]
            audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
            ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
            delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
        return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates

    add_speech_type_btn.click(
        add_speech_type_fn,
        inputs=speech_type_count,
        outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
    )

    # Function to delete a speech type
    def make_delete_speech_type_fn(index):
        def delete_speech_type_fn(speech_type_count):
            # Prepare updates
            name_updates = []
            audio_updates = []
            ref_text_updates = []
            delete_btn_updates = []

            for i in range(max_speech_types - 1):
                if i == index:
                    name_updates.append(gr.update(visible=False, value=''))
                    audio_updates.append(gr.update(visible=False, value=None))
                    ref_text_updates.append(gr.update(visible=False, value=''))
                    delete_btn_updates.append(gr.update(visible=False))
                else:
                    name_updates.append(gr.update())
                    audio_updates.append(gr.update())
                    ref_text_updates.append(gr.update())
                    delete_btn_updates.append(gr.update())

            speech_type_count = max(0, speech_type_count - 1)

            return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates

        return delete_speech_type_fn

    for i, delete_btn in enumerate(speech_type_delete_btns):
        delete_fn = make_delete_speech_type_fn(i)
        delete_btn.click(
            delete_fn,
            inputs=speech_type_count,
            outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
        )

    # Text input for the prompt
    gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)

    # Model choice
    model_choice_emotional = gr.Radio(
        choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS"
    )

    with gr.Accordion("Advanced Settings", open=False):
        remove_silence_emotional = gr.Checkbox(
            label="Remove Silences",
            value=True,
        )

    # Generate button
    generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")

    # Output audio
    audio_output_emotional = gr.Audio(label="Synthesized Audio")
    @gpu_decorator
    def generate_emotional_speech(
        regular_audio,
        regular_ref_text,
        gen_text,
        *args,
    ):
        num_additional_speech_types = max_speech_types - 1
        speech_type_names_list = args[:num_additional_speech_types]
        speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
        speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
        model_choice = args[3 * num_additional_speech_types]
        remove_silence = args[3 * num_additional_speech_types + 1]

        # Collect the speech types and their audios into a dict
        speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}

        for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
            if name_input and audio_input:
                speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}

        # Parse the gen_text into segments
        segments = parse_speechtypes_text(gen_text)

        # For each segment, generate speech
        generated_audio_segments = []
        current_emotion = 'Regular'

        for segment in segments:
            emotion = segment['emotion']
            text = segment['text']

            if emotion in speech_types:
                current_emotion = emotion
            else:
                # If emotion not available, default to Regular
                current_emotion = 'Regular'

            ref_audio = speech_types[current_emotion]['audio']
            ref_text = speech_types[current_emotion].get('ref_text', '')

            # Generate speech for this segment
            audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0)
            sr, audio_data = audio

            generated_audio_segments.append(audio_data)

        # Concatenate all audio segments
        if generated_audio_segments:
            final_audio_data = np.concatenate(generated_audio_segments)
            return (sr, final_audio_data)
        else:
            gr.Warning("No audio generated.")
            return None

    generate_emotional_btn.click(
        generate_emotional_speech,
        inputs=[
            regular_audio,
            regular_ref_text,
            gen_text_input_emotional,
        ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
            model_choice_emotional,
            remove_silence_emotional,
        ],
        outputs=audio_output_emotional,
    )

    # Validation function to disable Generate button if speech types are missing
    def validate_speech_types(
        gen_text,
        regular_name,
        *args
    ):
        num_additional_speech_types = max_speech_types - 1
        speech_type_names_list = args[:num_additional_speech_types]

        # Collect the speech types names
        speech_types_available = set()
        if regular_name:
            speech_types_available.add(regular_name)
        for name_input in speech_type_names_list:
            if name_input:
                speech_types_available.add(name_input)

        # Parse the gen_text to get the speech types used
        segments = parse_emotional_text(gen_text)
        speech_types_in_text = set(segment['emotion'] for segment in segments)

        # Check if all speech types in text are available
        missing_speech_types = speech_types_in_text - speech_types_available

        if missing_speech_types:
            # Disable the generate button
            return gr.update(interactive=False)
        else:
            # Enable the generate button
            return gr.update(interactive=True)

    gen_text_input_emotional.change(
        validate_speech_types,
        inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
        outputs=generate_emotional_btn
    )
with gr.Blocks() as app:
    gr.Markdown(
        """
# E2/F5 TTS

This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:

* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)

The checkpoints support English and Chinese.

If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.

**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
"""
    )
    gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"])

@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
    "--share",
    "-s",
    default=False,
    is_flag=True,
    help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
    global app
    print(f"Starting app...")
    app.queue(api_open=api).launch(
        server_name=host, server_port=port, share=share, show_api=api
    )


if __name__ == "__main__":
    if not USING_SPACES:
        main()
    else:
        app.queue().launch()