kevinwang676 commited on
Commit
ad6643a
·
verified ·
1 Parent(s): ff43011

Create app_vc.py

Browse files
Files changed (1) hide show
  1. GPT_SoVITS/app_vc.py +492 -0
GPT_SoVITS/app_vc.py ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ """
4
+ 受 GPT-SoVITS 启发
5
+ """
6
+
7
+ import os
8
+ import os.path as osp
9
+ import re
10
+ import logging
11
+ from time import time as ttime
12
+ from warnings import warn
13
+
14
+ logging.getLogger("markdown_it").setLevel(logging.ERROR)
15
+ logging.getLogger("urllib3").setLevel(logging.ERROR)
16
+ logging.getLogger("httpcore").setLevel(logging.ERROR)
17
+ logging.getLogger("httpx").setLevel(logging.ERROR)
18
+ logging.getLogger("asyncio").setLevel(logging.ERROR)
19
+ logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
20
+ logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
21
+
22
+ import torch
23
+ from torch import nn
24
+ import torch.nn.functional as F
25
+ import librosa
26
+ import numpy as np
27
+ import LangSegment
28
+ import gradio as gr
29
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
30
+ from feature_extractor import cnhubert
31
+
32
+ from module.models import SynthesizerTrn
33
+ from module.mel_processing import spectrogram_torch
34
+ from AR.models.t2s_lightning_module import Text2SemanticLightningModule
35
+ from text import cleaned_text_to_sequence
36
+ from text.cleaner import clean_text
37
+ from my_utils import load_audio
38
+ from tools.i18n.i18n import I18nAuto
39
+
40
+
41
+ def get_pretrain_model_path(env_name, log_file, def_path):
42
+ """ 获取预训练模型路径
43
+ env_name: 从环境变量获取,第一优先级
44
+ log_file: 记录在文本文件内,第二优先级
45
+ def_path: 传参,第三优先级
46
+ """
47
+ if osp.isfile(log_file):
48
+ def_path = open(log_file, 'r', encoding="utf-8").read()
49
+ pretrain_path = os.environ.get(env_name, def_path)
50
+ return pretrain_path
51
+
52
+
53
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
54
+ device = 'cpu'
55
+
56
+ gpt_path = get_pretrain_model_path('gpt_path', "./gweight.txt",
57
+ "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
58
+
59
+ sovits_path = get_pretrain_model_path('sovits_path', "./sweight.txt",
60
+ "GPT_SoVITS/pretrained_models/s2G488k.pth")
61
+
62
+ cnhubert_base_path = get_pretrain_model_path("cnhubert_base_path", '', "GPT_SoVITS/pretrained_models/chinese-hubert-base")
63
+
64
+ bert_path = get_pretrain_model_path("bert_path", '', "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
65
+
66
+ vc_webui_port = int(os.environ.get("vc_webui_port", 9888)) # specify gradio port
67
+ print(f'port: {vc_webui_port}')
68
+
69
+ is_share = eval(os.environ.get("is_share", "False"))
70
+
71
+ if "_CUDA_VISIBLE_DEVICES" in os.environ:
72
+ os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
73
+
74
+ # is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available()
75
+ is_half = False
76
+
77
+ os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
78
+
79
+ cnhubert.cnhubert_base_path = cnhubert_base_path
80
+
81
+ i18n = I18nAuto()
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained(bert_path)
84
+ bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
85
+ if is_half:
86
+ bert_model = bert_model.half().to(device)
87
+ else:
88
+ bert_model = bert_model.to(device)
89
+
90
+
91
+ def get_bert_feature(text, word2ph):
92
+ with torch.no_grad():
93
+ inputs = tokenizer(text, return_tensors="pt")
94
+ for i in inputs:
95
+ inputs[i] = inputs[i].to(device)
96
+ res = bert_model(**inputs, output_hidden_states=True)
97
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
98
+ assert len(word2ph) == len(text)
99
+ phone_level_feature = []
100
+ for i in range(len(word2ph)):
101
+ repeat_feature = res[i].repeat(word2ph[i], 1)
102
+ phone_level_feature.append(repeat_feature)
103
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
104
+ return phone_level_feature.T
105
+
106
+
107
+ class DictToAttrRecursive(dict):
108
+ def __init__(self, input_dict):
109
+ super().__init__(input_dict)
110
+ for key, value in input_dict.items():
111
+ if isinstance(value, dict):
112
+ value = DictToAttrRecursive(value)
113
+ self[key] = value
114
+ setattr(self, key, value)
115
+
116
+ def __getattr__(self, item):
117
+ try:
118
+ return self[item]
119
+ except KeyError:
120
+ raise AttributeError(f"Attribute {item} not found")
121
+
122
+ def __setattr__(self, key, value):
123
+ if isinstance(value, dict):
124
+ value = DictToAttrRecursive(value)
125
+ super(DictToAttrRecursive, self).__setitem__(key, value)
126
+ super().__setattr__(key, value)
127
+
128
+ def __delattr__(self, item):
129
+ try:
130
+ del self[item]
131
+ except KeyError:
132
+ raise AttributeError(f"Attribute {item} not found")
133
+
134
+
135
+ ssl_model = cnhubert.get_model()
136
+ if is_half:
137
+ ssl_model = ssl_model.half().to(device)
138
+ else:
139
+ ssl_model = ssl_model.to(device)
140
+
141
+
142
+ def change_sovits_weights(sovits_path):
143
+ global vq_model, hps
144
+ dict_s2 = torch.load(sovits_path, map_location="cpu")
145
+ hps = dict_s2["config"]
146
+ hps = DictToAttrRecursive(hps)
147
+ hps.model.semantic_frame_rate = "25hz"
148
+ vq_model = SynthesizerTrn(
149
+ hps.data.filter_length // 2 + 1,
150
+ hps.train.segment_size // hps.data.hop_length,
151
+ n_speakers=hps.data.n_speakers,
152
+ **hps.model
153
+ )
154
+ if ("pretrained" not in sovits_path):
155
+ del vq_model.enc_q
156
+ if is_half == True:
157
+ vq_model = vq_model.half().to(device)
158
+ else:
159
+ vq_model = vq_model.to(device)
160
+ vq_model.eval()
161
+ print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
162
+ with open("./sweight.txt", "w", encoding="utf-8") as f:
163
+ f.write(sovits_path)
164
+
165
+
166
+ change_sovits_weights(sovits_path)
167
+
168
+
169
+ def change_gpt_weights(gpt_path):
170
+ global hz, max_sec, t2s_model, config
171
+ hz = 50
172
+ dict_s1 = torch.load(gpt_path, map_location="cpu")
173
+ config = dict_s1["config"]
174
+ max_sec = config["data"]["max_sec"]
175
+ t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
176
+ t2s_model.load_state_dict(dict_s1["weight"])
177
+ if is_half == True:
178
+ t2s_model = t2s_model.half()
179
+ t2s_model = t2s_model.to(device)
180
+ t2s_model.eval()
181
+ total = sum([param.nelement() for param in t2s_model.parameters()])
182
+ print("Number of parameter: %.2fM" % (total / 1e6))
183
+ with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
184
+
185
+
186
+ change_gpt_weights(gpt_path)
187
+
188
+
189
+ def get_spepc(hps, filename):
190
+ audio = load_audio(filename, int(hps.data.sampling_rate))
191
+ audio = torch.FloatTensor(audio)
192
+ audio_norm = audio
193
+ audio_norm = audio_norm.unsqueeze(0)
194
+ spec = spectrogram_torch(
195
+ audio_norm,
196
+ hps.data.filter_length,
197
+ hps.data.sampling_rate,
198
+ hps.data.hop_length,
199
+ hps.data.win_length,
200
+ center=False,
201
+ )
202
+ return spec
203
+
204
+
205
+ dict_language = {
206
+ i18n("中文"): "all_zh",#全部按中文识别
207
+ i18n("英文"): "en",#全部按英文识别#######不变
208
+ i18n("日文"): "all_ja",#全部按日文识别
209
+ i18n("中英混合"): "zh",#按中英混合识别####不变
210
+ i18n("日英混合"): "ja",#按日英混合识别####不变
211
+ i18n("多语种混合"): "auto",#多语种启动切分识别语种
212
+ }
213
+
214
+
215
+ # def clean_text_inf(text, language):
216
+ # phones, word2ph, norm_text = clean_text(text, language)
217
+ # phones = cleaned_text_to_sequence(phones)
218
+ # return phones, word2ph, norm_text
219
+
220
+
221
+ def clean_text_inf(text, language):
222
+ """
223
+ text: 字符串
224
+ language: 所属语言
225
+
226
+ return:
227
+ phones: 音素 id 序列
228
+ word2ph: 每个字转音素后,对应的个数,对于中文,就是声韵母,因此是全是 2 的 list
229
+ norm_text: 归一化后文本
230
+ """
231
+ formattext = ""
232
+ language = language.replace("all_","")
233
+ for tmp in LangSegment.getTexts(text):
234
+ if language == "ja":
235
+ if tmp["lang"] == language or tmp["lang"] == "zh":
236
+ formattext += tmp["text"] + " "
237
+ continue
238
+ if tmp["lang"] == language:
239
+ formattext += tmp["text"] + " "
240
+ while " " in formattext:
241
+ formattext = formattext.replace(" ", " ")
242
+ phones, word2ph, norm_text = clean_text(formattext, language)
243
+ # print(f'音素: {phones}')
244
+ phones = cleaned_text_to_sequence(phones) # 统一了中、英、日等
245
+ # print(f'音素 id: {phones}')
246
+ return phones, word2ph, norm_text
247
+
248
+
249
+ dtype=torch.float16 if is_half == True else torch.float32
250
+ def get_bert_inf(phones, word2ph, norm_text, language):
251
+ language=language.replace("all_","")
252
+ if language == "zh":
253
+ bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
254
+ else:
255
+ bert = torch.zeros(
256
+ (1024, len(phones)),
257
+ dtype=torch.float16 if is_half == True else torch.float32,
258
+ ).to(device)
259
+
260
+ return bert
261
+
262
+
263
+ splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
264
+
265
+ def split(todo_text):
266
+ todo_text = todo_text.replace("……", "。").replace("——", ",")
267
+ if todo_text[-1] not in splits:
268
+ todo_text += "。"
269
+ i_split_head = i_split_tail = 0
270
+ len_text = len(todo_text)
271
+ todo_texts = []
272
+ while 1:
273
+ if i_split_head >= len_text:
274
+ break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
275
+ if todo_text[i_split_head] in splits:
276
+ i_split_head += 1
277
+ todo_texts.append(todo_text[i_split_tail:i_split_head])
278
+ i_split_tail = i_split_head
279
+ else:
280
+ i_split_head += 1
281
+ return todo_texts
282
+
283
+ def custom_sort_key(s):
284
+ # 使用正则表达式提取字符串中的数字部分和非数字部分
285
+ parts = re.split('(\d+)', s)
286
+ # 将数字部分转换为整数,非数字部分保持不变
287
+ parts = [int(part) if part.isdigit() else part for part in parts]
288
+ return parts
289
+
290
+
291
+ def change_choices():
292
+ SoVITS_names, GPT_names = get_weights_names()
293
+ return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
294
+
295
+
296
+ pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
297
+ pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
298
+ SoVITS_weight_root = "SoVITS_weights"
299
+ GPT_weight_root = "GPT_weights"
300
+ os.makedirs(SoVITS_weight_root, exist_ok=True)
301
+ os.makedirs(GPT_weight_root, exist_ok=True)
302
+
303
+
304
+ def get_weights_names():
305
+ SoVITS_names = [pretrained_sovits_name]
306
+ for name in os.listdir(SoVITS_weight_root):
307
+ if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
308
+ GPT_names = [pretrained_gpt_name]
309
+ for name in os.listdir(GPT_weight_root):
310
+ if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
311
+ return SoVITS_names, GPT_names
312
+
313
+
314
+ SoVITS_names, GPT_names = get_weights_names()
315
+
316
+
317
+ @torch.no_grad()
318
+ def get_code_from_ssl(ssl):
319
+ ssl = vq_model.ssl_proj(ssl)
320
+ quantized, codes, commit_loss, quantized_list = vq_model.quantizer(ssl)
321
+ # print(codes.shape, codes.dtype) # [n_q, B, T]
322
+ return codes.transpose(0, 1) # [B, n_q, T]
323
+
324
+
325
+ @torch.no_grad()
326
+ def get_code_from_wav(wav_path):
327
+ wav16k, sr = librosa.load(wav_path, sr=16000)
328
+ if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
329
+ # raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
330
+ warn(i18n("参考音频在3~10秒范围外,请更换!"))
331
+ wav16k = torch.from_numpy(wav16k)
332
+ if is_half == True:
333
+ wav16k = wav16k.half().to(device)
334
+ else:
335
+ wav16k = wav16k.to(device)
336
+ ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
337
+ "last_hidden_state"
338
+ ].transpose(
339
+ 1, 2
340
+ ) # .float()
341
+ codes = get_code_from_ssl(ssl_content) # [B, n_q, T]
342
+
343
+ prompt_semantic = codes[0, 0]
344
+ return prompt_semantic
345
+
346
+
347
+ def splite_en_inf(sentence, language):
348
+ pattern = re.compile(r'[a-zA-Z ]+')
349
+ textlist = []
350
+ langlist = []
351
+ pos = 0
352
+ for match in pattern.finditer(sentence):
353
+ start, end = match.span()
354
+ if start > pos:
355
+ textlist.append(sentence[pos:start])
356
+ langlist.append(language)
357
+ textlist.append(sentence[start:end])
358
+ langlist.append("en")
359
+ pos = end
360
+ if pos < len(sentence):
361
+ textlist.append(sentence[pos:])
362
+ langlist.append(language)
363
+ # Merge punctuation into previous word
364
+ for i in range(len(textlist)-1, 0, -1):
365
+ if re.match(r'^[\W_]+$', textlist[i]):
366
+ textlist[i-1] += textlist[i]
367
+ del textlist[i]
368
+ del langlist[i]
369
+ # Merge consecutive words with the same language tag
370
+ i = 0
371
+ while i < len(langlist) - 1:
372
+ if langlist[i] == langlist[i+1]:
373
+ textlist[i] += textlist[i+1]
374
+ del textlist[i+1]
375
+ del langlist[i+1]
376
+ else:
377
+ i += 1
378
+
379
+ return textlist, langlist
380
+
381
+
382
+ def nonen_clean_text_inf(text, language):
383
+ if(language!="auto"):
384
+ textlist, langlist = splite_en_inf(text, language)
385
+ else:
386
+ textlist=[]
387
+ langlist=[]
388
+ for tmp in LangSegment.getTexts(text):
389
+ langlist.append(tmp["lang"])
390
+ textlist.append(tmp["text"])
391
+ phones_list = []
392
+ word2ph_list = []
393
+ norm_text_list = []
394
+ for i in range(len(textlist)):
395
+ lang = langlist[i]
396
+ phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
397
+ phones_list.append(phones)
398
+ if lang == "zh":
399
+ word2ph_list.append(word2ph)
400
+ norm_text_list.append(norm_text)
401
+ print(word2ph_list)
402
+ phones = sum(phones_list, [])
403
+ word2ph = sum(word2ph_list, [])
404
+ norm_text = ' '.join(norm_text_list)
405
+
406
+ return phones, word2ph, norm_text
407
+
408
+
409
+ def get_cleaned_text_final(text,language):
410
+ if language in {"en","all_zh","all_ja"}:
411
+ phones, word2ph, norm_text = clean_text_inf(text, language)
412
+ elif language in {"zh", "ja","auto"}:
413
+ phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
414
+ return phones, word2ph, norm_text
415
+
416
+
417
+ @torch.no_grad()
418
+ def vc_main(wav_path, text, language, prompt_wav, noise_scale=0.5):
419
+ """ Voice Conversion
420
+ wav_path: 待变声的源音频
421
+ text: 对应文本
422
+ language: 对应语言
423
+ prompt_wav: 目标人声
424
+ """
425
+ language = dict_language[language]
426
+
427
+ phones, word2ph, norm_text = get_cleaned_text_final(text, language)
428
+
429
+ spec = get_spepc(hps, prompt_wav)
430
+ codes = get_code_from_wav(wav_path)[None, None] # 必须是 3D, [n_q, B, T]
431
+ ge = vq_model.ref_enc(spec) # [B, D, T/1]
432
+ quantized = vq_model.quantizer.decode(codes) # [B, D, T]
433
+ if hps.model.semantic_frame_rate == "25hz":
434
+ quantized = F.interpolate(
435
+ quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
436
+ )
437
+ _, m_p, logs_p, y_mask = vq_model.enc_p(
438
+ quantized, torch.LongTensor([quantized.shape[-1]]),
439
+ torch.LongTensor(phones)[None], torch.LongTensor([len(phones)]), ge
440
+ )
441
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
442
+ z = vq_model.flow(z_p, y_mask, g=ge, reverse=True)
443
+ o = vq_model.dec((z * y_mask)[:, :, :], g=ge) # [B, D=1, T], torch.float32 (-1, 1)
444
+ audio = o.detach().cpu().numpy()[0, 0]
445
+ max_audio = np.abs(audio).max() # 简单防止16bit爆音
446
+ if max_audio > 1:
447
+ audio /= max_audio
448
+ yield hps.data.sampling_rate, (audio * 32768).astype(np.int16)
449
+
450
+
451
+ with gr.Blocks(title="GPT-SoVITS-VC WebUI") as app:
452
+
453
+ gr.Markdown(
454
+ value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
455
+ )
456
+
457
+ with gr.Group():
458
+ gr.Markdown(value=i18n("模型切换"))
459
+
460
+ with gr.Row():
461
+ GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
462
+ SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
463
+ refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
464
+ refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
465
+ SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
466
+ GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
467
+
468
+ gr.Markdown(value=i18n("* 请上传目标音色音频,要求说话人单一,声音干净"))
469
+ with gr.Row():
470
+ inp_ref = gr.Audio(label=i18n("请上传 3~10 秒内参考音频,超过会报警!"), type="filepath")
471
+
472
+ gr.Markdown(value=i18n("* 请填写需要变声/转换的源音频,以及对应文本"))
473
+ with gr.Row():
474
+ src_audio = gr.Audio(label=i18n('源音频'), type='filepath')
475
+ text = gr.Textbox(label=i18n("源音频对应文本"), value="")
476
+ text_language = gr.Dropdown(
477
+ label=i18n("文本语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
478
+ )
479
+
480
+ inference_button = gr.Button(i18n("合成语音"), variant="primary")
481
+ output = gr.Audio(label=i18n("变声后"))
482
+
483
+ inference_button.click(
484
+ vc_main,
485
+ [src_audio, text, text_language, inp_ref],
486
+ [output],
487
+ )
488
+
489
+ app.queue().launch(
490
+ share=False,
491
+ show_error=True,
492
+ )