File size: 4,862 Bytes
1503e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Credits
    This code is modified from https://github.com/GitYCC/g2pW
"""
import os
import re


def wordize_and_map(text: str):
    words = []
    index_map_from_text_to_word = []
    index_map_from_word_to_text = []
    while len(text) > 0:
        match_space = re.match(r'^ +', text)
        if match_space:
            space_str = match_space.group(0)
            index_map_from_text_to_word += [None] * len(space_str)
            text = text[len(space_str):]
            continue

        match_en = re.match(r'^[a-zA-Z0-9]+', text)
        if match_en:
            en_word = match_en.group(0)

            word_start_pos = len(index_map_from_text_to_word)
            word_end_pos = word_start_pos + len(en_word)
            index_map_from_word_to_text.append((word_start_pos, word_end_pos))

            index_map_from_text_to_word += [len(words)] * len(en_word)

            words.append(en_word)
            text = text[len(en_word):]
        else:
            word_start_pos = len(index_map_from_text_to_word)
            word_end_pos = word_start_pos + 1
            index_map_from_word_to_text.append((word_start_pos, word_end_pos))

            index_map_from_text_to_word += [len(words)]

            words.append(text[0])
            text = text[1:]
    return words, index_map_from_text_to_word, index_map_from_word_to_text


def tokenize_and_map(tokenizer, text: str):
    words, text2word, word2text = wordize_and_map(text=text)

    tokens = []
    index_map_from_token_to_text = []
    for word, (word_start, word_end) in zip(words, word2text):
        word_tokens = tokenizer.tokenize(word)

        if len(word_tokens) == 0 or word_tokens == ['[UNK]']:
            index_map_from_token_to_text.append((word_start, word_end))
            tokens.append('[UNK]')
        else:
            current_word_start = word_start
            for word_token in word_tokens:
                word_token_len = len(re.sub(r'^##', '', word_token))
                index_map_from_token_to_text.append(
                    (current_word_start, current_word_start + word_token_len))
                current_word_start = current_word_start + word_token_len
                tokens.append(word_token)

    index_map_from_text_to_token = text2word
    for i, (token_start, token_end) in enumerate(index_map_from_token_to_text):
        for token_pos in range(token_start, token_end):
            index_map_from_text_to_token[token_pos] = i

    return tokens, index_map_from_text_to_token, index_map_from_token_to_text


def _load_config(config_path: os.PathLike):
    import importlib.util
    spec = importlib.util.spec_from_file_location('__init__', config_path)
    config = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(config)
    return config


default_config_dict = {
    'manual_seed': 1313,
    'model_source': 'bert-base-chinese',
    'window_size': 32,
    'num_workers': 2,
    'use_mask': True,
    'use_char_phoneme': False,
    'use_conditional': True,
    'param_conditional': {
        'affect_location': 'softmax',
        'bias': True,
        'char-linear': True,
        'pos-linear': False,
        'char+pos-second': True,
        'char+pos-second_lowrank': False,
        'lowrank_size': 0,
        'char+pos-second_fm': False,
        'fm_size': 0,
        'fix_mode': None,
        'count_json': 'train.count.json'
    },
    'lr': 5e-5,
    'val_interval': 200,
    'num_iter': 10000,
    'use_focal': False,
    'param_focal': {
        'alpha': 0.0,
        'gamma': 0.7
    },
    'use_pos': True,
    'param_pos ': {
        'weight': 0.1,
        'pos_joint_training': True,
        'train_pos_path': 'train.pos',
        'valid_pos_path': 'dev.pos',
        'test_pos_path': 'test.pos'
    }
}


def load_config(config_path: os.PathLike, use_default: bool=False):
    config = _load_config(config_path)
    if use_default:
        for attr, val in default_config_dict.items():
            if not hasattr(config, attr):
                setattr(config, attr, val)
            elif isinstance(val, dict):
                d = getattr(config, attr)
                for dict_k, dict_v in val.items():
                    if dict_k not in d:
                        d[dict_k] = dict_v
    return config