diff --git "a/webui.py" "b/webui.py"
--- "a/webui.py"
+++ "b/webui.py"
@@ -1,1013 +1,1010 @@
-import os,sys
-if len(sys.argv)==1:sys.argv.append('v2')
-version="v1"if sys.argv[1]=="v1" else"v2"
-os.environ["version"]=version
-now_dir = os.getcwd()
-sys.path.insert(0, now_dir)
-import warnings
-warnings.filterwarnings("ignore")
-import json,yaml,torch,pdb,re,shutil
-import platform
-import psutil
-import signal
-torch.manual_seed(233333)
-tmp = os.path.join(now_dir, "TEMP")
-os.makedirs(tmp, exist_ok=True)
-os.environ["TEMP"] = tmp
-if(os.path.exists(tmp)):
- for name in os.listdir(tmp):
- if(name=="jieba.cache"):continue
- path="%s/%s"%(tmp,name)
- delete=os.remove if os.path.isfile(path) else shutil.rmtree
- try:
- delete(path)
- except Exception as e:
- print(str(e))
- pass
-import site
-site_packages_roots = []
-for path in site.getsitepackages():
- if "packages" in path:
- site_packages_roots.append(path)
-if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
-#os.environ["OPENBLAS_NUM_THREADS"] = "4"
-os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
-os.environ["all_proxy"] = ""
-for site_packages_root in site_packages_roots:
- if os.path.exists(site_packages_root):
- try:
- with open("%s/users.pth" % (site_packages_root), "w") as f:
- f.write(
- "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
- % (now_dir, now_dir, now_dir, now_dir, now_dir)
- )
- break
- except PermissionError:
- pass
-from tools import my_utils
-import traceback
-import shutil
-import pdb
-from subprocess import Popen
-import signal
-from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
-from tools.i18n.i18n import I18nAuto, scan_language_list
-language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
-os.environ["language"]=language
-i18n = I18nAuto(language=language)
-from scipy.io import wavfile
-from tools.my_utils import load_audio
-from multiprocessing import cpu_count
-# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
-import gradio.analytics as analytics
-analytics.version_check = lambda:None
-import gradio as gr
-n_cpu=cpu_count()
-
-ngpu = torch.cuda.device_count()
-gpu_infos = []
-mem = []
-if_gpu_ok = False
-
-# 判断是否有能用来训练和加速推理的N卡
-ok_gpu_keywords={"10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060","H"}
-set_gpu_numbers=set()
-if torch.cuda.is_available() or ngpu != 0:
- for i in range(ngpu):
- gpu_name = torch.cuda.get_device_name(i)
- if any(value in gpu_name.upper()for value in ok_gpu_keywords):
- # A10#A100#V100#A40#P40#M40#K80#A4500
- if_gpu_ok = True # 至少有一张能用的N卡
- gpu_infos.append("%s\t%s" % (i, gpu_name))
- set_gpu_numbers.add(i)
- mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
-# # 判断是否支持mps加速
-# if torch.backends.mps.is_available():
-# if_gpu_ok = True
-# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
-# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
-
-if if_gpu_ok and len(gpu_infos) > 0:
- gpu_info = "\n".join(gpu_infos)
- default_batch_size = min(mem) // 2
-else:
- gpu_info = ("%s\t%s" % ("0", "CPU"))
- gpu_infos.append("%s\t%s" % ("0", "CPU"))
- set_gpu_numbers.add(0)
- default_batch_size = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2)
-gpus = "-".join([i[0] for i in gpu_infos])
-default_gpu_numbers=str(sorted(list(set_gpu_numbers))[0])
-def fix_gpu_number(input):#将越界的number强制改到界内
- try:
- if(int(input)not in set_gpu_numbers):return default_gpu_numbers
- except:return input
- return input
-def fix_gpu_numbers(inputs):
- output=[]
- try:
- for input in inputs.split(","):output.append(str(fix_gpu_number(input)))
- return ",".join(output)
- except:
- return inputs
-
-pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
-pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
-
-pretrained_model_list = (pretrained_sovits_name[-int(version[-1])+2],pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"),pretrained_gpt_name[-int(version[-1])+2],"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large","GPT_SoVITS/pretrained_models/chinese-hubert-base")
-
-_=''
-for i in pretrained_model_list:
- if os.path.exists(i):...
- else:_+=f'\n {i}'
-if _:
- print("warning:",i18n('以下模型不存在:')+_)
-
-_ =[[],[]]
-for i in range(2):
- if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
- else:_[0].append("")##没有下pretrained模型的,说不定他们是想自己从零训底模呢
- if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
- else:_[-1].append("")
-pretrained_gpt_name,pretrained_sovits_name = _
-
-SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
-GPT_weight_root=["GPT_weights_v2","GPT_weights"]
-for root in SoVITS_weight_root+GPT_weight_root:
- os.makedirs(root,exist_ok=True)
-def get_weights_names():
- SoVITS_names = [name for name in pretrained_sovits_name if name!=""]
- for path in SoVITS_weight_root:
- for name in os.listdir(path):
- if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
- GPT_names = [name for name in pretrained_gpt_name if name!=""]
- for path in GPT_weight_root:
- for name in os.listdir(path):
- if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
- return SoVITS_names, GPT_names
-
-SoVITS_names,GPT_names = get_weights_names()
-for path in SoVITS_weight_root+GPT_weight_root:
- os.makedirs(path,exist_ok=True)
-
-
-def custom_sort_key(s):
- # 使用正则表达式提取字符串中的数字部分和非数字部分
- parts = re.split('(\d+)', s)
- # 将数字部分转换为整数,非数字部分保持不变
- parts = [int(part) if part.isdigit() else part for part in parts]
- return parts
-
-def change_choices():
- SoVITS_names, GPT_names = get_weights_names()
- return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
-
-p_label=None
-p_uvr5=None
-p_asr=None
-p_denoise=None
-p_tts_inference=None
-
-def kill_proc_tree(pid, including_parent=True):
- try:
- parent = psutil.Process(pid)
- except psutil.NoSuchProcess:
- # Process already terminated
- return
-
- children = parent.children(recursive=True)
- for child in children:
- try:
- os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
- except OSError:
- pass
- if including_parent:
- try:
- os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
- except OSError:
- pass
-
-system=platform.system()
-def kill_process(pid):
- if(system=="Windows"):
- cmd = "taskkill /t /f /pid %s" % pid
- os.system(cmd)
- else:
- kill_proc_tree(pid)
-
-
-def change_label(if_label,path_list):
- global p_label
- if(if_label==True and p_label==None):
- path_list=my_utils.clean_path(path_list)
- cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
- yield i18n("打标工具WebUI已开启")
- print(cmd)
- p_label = Popen(cmd, shell=True)
- elif(if_label==False and p_label!=None):
- kill_process(p_label.pid)
- p_label=None
- yield i18n("打标工具WebUI已关闭")
-
-def change_uvr5(if_uvr5):
- global p_uvr5
- if(if_uvr5==True and p_uvr5==None):
- cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
- yield i18n("UVR5已开启")
- print(cmd)
- p_uvr5 = Popen(cmd, shell=True)
- elif(if_uvr5==False and p_uvr5!=None):
- kill_process(p_uvr5.pid)
- p_uvr5=None
- yield i18n("UVR5已关闭")
-
-def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
- global p_tts_inference
- if(if_tts==True and p_tts_inference==None):
- os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
- os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
- os.environ["cnhubert_base_path"]=cnhubert_base_path
- os.environ["bert_path"]=bert_path
- os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_number(gpu_number)
- os.environ["is_half"]=str(is_half)
- os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
- os.environ["is_share"]=str(is_share)
- cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
- yield i18n("TTS推理进程已开启")
- print(cmd)
- p_tts_inference = Popen(cmd, shell=True)
- elif(if_tts==False and p_tts_inference!=None):
- kill_process(p_tts_inference.pid)
- p_tts_inference=None
- yield i18n("TTS推理进程已关闭")
-
-from tools.asr.config import asr_dict
-def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision):
- global p_asr
- if(p_asr==None):
- asr_inp_dir=my_utils.clean_path(asr_inp_dir)
- asr_opt_dir=my_utils.clean_path(asr_opt_dir)
- check_for_exists([asr_inp_dir])
- cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
- cmd += f' -i "{asr_inp_dir}"'
- cmd += f' -o "{asr_opt_dir}"'
- cmd += f' -s {asr_model_size}'
- cmd += f' -l {asr_lang}'
- cmd += f" -p {asr_precision}"
- output_file_name = os.path.basename(asr_inp_dir)
- output_folder = asr_opt_dir or "output/asr_opt"
- output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list')
- yield "ASR任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"}
- print(cmd)
- p_asr = Popen(cmd, shell=True)
- p_asr.wait()
- p_asr=None
- yield f"ASR任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":asr_inp_dir}
- else:
- yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"}
- # return None
-
-def close_asr():
- global p_asr
- if(p_asr!=None):
- kill_process(p_asr.pid)
- p_asr=None
- return "已终止ASR进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
-def open_denoise(denoise_inp_dir, denoise_opt_dir):
- global p_denoise
- if(p_denoise==None):
- denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
- denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
- check_for_exists([denoise_inp_dir])
- cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")
-
- yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}
- print(cmd)
- p_denoise = Popen(cmd, shell=True)
- p_denoise.wait()
- p_denoise=None
- yield f"语音降噪任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":denoise_opt_dir}, {"__type__":"update","value":denoise_opt_dir}
- else:
- yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}
- # return None
-
-def close_denoise():
- global p_denoise
- if(p_denoise!=None):
- kill_process(p_denoise.pid)
- p_denoise=None
- return "已终止语音降噪进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
-
-p_train_SoVITS=None
-def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
- global p_train_SoVITS
- if(p_train_SoVITS==None):
- with open("GPT_SoVITS/configs/s2.json")as f:
- data=f.read()
- data=json.loads(data)
- s2_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
- check_for_exists([s2_dir],is_train=True)
- if(is_half==False):
- data["train"]["fp16_run"]=False
- batch_size=max(1,batch_size//2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["train"]["text_low_lr_rate"]=text_low_lr_rate
- data["train"]["pretrained_s2G"]=pretrained_s2G
- data["train"]["pretrained_s2D"]=pretrained_s2D
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["save_every_epoch"]=save_every_epoch
- data["train"]["gpu_numbers"]=gpu_numbers1Ba
- data["model"]["version"]=version
- data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
- data["save_weight_dir"]=SoVITS_weight_root[-int(version[-1])+2]
- data["name"]=exp_name
- data["version"]=version
- tmp_config_path="%s/tmp_s2.json"%tmp
- with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
-
- cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
- yield "SoVITS训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
- print(cmd)
- p_train_SoVITS = Popen(cmd, shell=True)
- p_train_SoVITS.wait()
- p_train_SoVITS=None
- yield "SoVITS训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
- else:
- yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
-
-def close1Ba():
- global p_train_SoVITS
- if(p_train_SoVITS!=None):
- kill_process(p_train_SoVITS.pid)
- p_train_SoVITS=None
- return "已终止SoVITS训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
-
-p_train_GPT=None
-def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
- global p_train_GPT
- if(p_train_GPT==None):
- with open("GPT_SoVITS/configs/s1longer.yaml"if version=="v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f:
- data=f.read()
- data=yaml.load(data, Loader=yaml.FullLoader)
- s1_dir="%s/%s"%(exp_root,exp_name)
- os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
- check_for_exists([s1_dir],is_train=True)
- if(is_half==False):
- data["train"]["precision"]="32"
- batch_size = max(1, batch_size // 2)
- data["train"]["batch_size"]=batch_size
- data["train"]["epochs"]=total_epoch
- data["pretrained_s1"]=pretrained_s1
- data["train"]["save_every_n_epoch"]=save_every_epoch
- data["train"]["if_save_every_weights"]=if_save_every_weights
- data["train"]["if_save_latest"]=if_save_latest
- data["train"]["if_dpo"]=if_dpo
- data["train"]["half_weights_save_dir"]=GPT_weight_root[-int(version[-1])+2]
- data["train"]["exp_name"]=exp_name
- data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
- data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
- data["output_dir"]="%s/logs_s1"%s1_dir
- # data["version"]=version
-
- os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_numbers(gpu_numbers.replace("-",","))
- os.environ["hz"]="25hz"
- tmp_config_path="%s/tmp_s1.yaml"%tmp
- with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
- # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
- cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
- yield "GPT训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
- print(cmd)
- p_train_GPT = Popen(cmd, shell=True)
- p_train_GPT.wait()
- p_train_GPT=None
- yield "GPT训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
- else:
- yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
-
-def close1Bb():
- global p_train_GPT
- if(p_train_GPT!=None):
- kill_process(p_train_GPT.pid)
- p_train_GPT=None
- return "已终止GPT训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
-
-ps_slice=[]
-def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
- global ps_slice
- inp = my_utils.clean_path(inp)
- opt_root = my_utils.clean_path(opt_root)
- check_for_exists([inp])
- if(os.path.exists(inp)==False):
- yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
- return
- if os.path.isfile(inp):n_parts=1
- elif os.path.isdir(inp):pass
- else:
- yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
- return
- if (ps_slice == []):
- for i_part in range(n_parts):
- cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
- print(cmd)
- p = Popen(cmd, shell=True)
- ps_slice.append(p)
- yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
- for p in ps_slice:
- p.wait()
- ps_slice=[]
- yield "切割结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}
- else:
- yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
-
-def close_slice():
- global ps_slice
- if (ps_slice != []):
- for p_slice in ps_slice:
- try:
- kill_process(p_slice.pid)
- except:
- traceback.print_exc()
- ps_slice=[]
- return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-
-ps1a=[]
-def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
- global ps1a
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True)
- if (ps1a == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- "is_half": str(is_half)
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1a.append(p)
- yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1a:
- p.wait()
- opt = []
- for i_part in range(all_parts):
- txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
- with open(txt_path, "r", encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(txt_path)
- path_text = "%s/2-name2text.txt" % opt_dir
- with open(path_text, "w", encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- ps1a=[]
- if len("".join(opt)) > 0:
- yield "文本进程成功", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- else:
- yield "文本进程失败", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- else:
- yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
-
-def close1a():
- global ps1a
- if (ps1a != []):
- for p1a in ps1a:
- try:
- kill_process(p1a.pid)
- except:
- traceback.print_exc()
- ps1a=[]
- return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-
-ps1b=[]
-def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
- global ps1b
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True)
- if (ps1b == []):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":"%s/%s"%(exp_root,exp_name),
- "cnhubert_base_dir":ssl_pretrained_dir,
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1b.append(p)
- yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1b:
- p.wait()
- ps1b=[]
- yield "SSL提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
- else:
- yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
-
-def close1b():
- global ps1b
- if (ps1b != []):
- for p1b in ps1b:
- try:
- kill_process(p1b.pid)
- except:
- traceback.print_exc()
- ps1b=[]
- return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-
-ps1c=[]
-def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
- global ps1c
- inp_text = my_utils.clean_path(inp_text)
- check_for_exists([inp_text,''], is_dataset_processing=True)
- if (ps1c == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1c.append(p)
- yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1c:
- p.wait()
- opt = ["item_name\tsemantic_audio"]
- path_semantic = "%s/6-name2semantic.tsv" % opt_dir
- for i_part in range(all_parts):
- semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
- with open(semantic_path, "r", encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(semantic_path)
- with open(path_semantic, "w", encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- ps1c=[]
- yield "语义token提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
- else:
- yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
-
-def close1c():
- global ps1c
- if (ps1c != []):
- for p1c in ps1c:
- try:
- kill_process(p1c.pid)
- except:
- traceback.print_exc()
- ps1c=[]
- return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
-ps1abc=[]
-def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
- global ps1abc
- inp_text = my_utils.clean_path(inp_text)
- inp_wav_dir = my_utils.clean_path(inp_wav_dir)
- check_for_exists([inp_text,inp_wav_dir])
- if (ps1abc == []):
- opt_dir="%s/%s"%(exp_root,exp_name)
- try:
- #############################1a
- path_text="%s/2-name2text.txt" % opt_dir
- if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "bert_pretrained_dir":bert_pretrained_dir,
- "is_half": str(is_half)
- }
- gpu_names=gpu_numbers1a.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
-
- opt = []
- for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
- txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
- with open(txt_path, "r",encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(txt_path)
- with open(path_text, "w",encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- assert len("".join(opt)) > 0, "1Aa-文本获取进程失败"
- yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1b
- config={
- "inp_text":inp_text,
- "inp_wav_dir":inp_wav_dir,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "cnhubert_base_dir":ssl_pretrained_dir,
- }
- gpu_names=gpu_numbers1Ba.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
- yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc=[]
- #############################1c
- path_semantic = "%s/6-name2semantic.tsv" % opt_dir
- if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
- config={
- "inp_text":inp_text,
- "exp_name":exp_name,
- "opt_dir":opt_dir,
- "pretrained_s2G":pretrained_s2G_path,
- "s2config_path":"GPT_SoVITS/configs/s2.json",
- }
- gpu_names=gpu_numbers1c.split("-")
- all_parts=len(gpu_names)
- for i_part in range(all_parts):
- config.update(
- {
- "i_part": str(i_part),
- "all_parts": str(all_parts),
- "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
- }
- )
- os.environ.update(config)
- cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
- print(cmd)
- p = Popen(cmd, shell=True)
- ps1abc.append(p)
- yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- for p in ps1abc:p.wait()
-
- opt = ["item_name\tsemantic_audio"]
- for i_part in range(all_parts):
- semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
- with open(semantic_path, "r",encoding="utf8") as f:
- opt += f.read().strip("\n").split("\n")
- os.remove(semantic_path)
- with open(path_semantic, "w",encoding="utf8") as f:
- f.write("\n".join(opt) + "\n")
- yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
- ps1abc = []
- yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- except:
- traceback.print_exc()
- close1abc()
- yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
- else:
- yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
-
-def close1abc():
- global ps1abc
- if (ps1abc != []):
- for p1abc in ps1abc:
- try:
- kill_process(p1abc.pid)
- except:
- traceback.print_exc()
- ps1abc=[]
- return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
-
-def switch_version(version_):
- os.environ['version']=version_
- global version
- version = version_
- if pretrained_sovits_name[-int(version[-1])+2] !='' and pretrained_gpt_name[-int(version[-1])+2] !='':...
- else:
- gr.Warning(i18n(f'未下载{version.upper()}模型'))
- return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}
-
-def check_for_exists(file_list=None,is_train=False,is_dataset_processing=False):
- missing_files=[]
- if is_train == True and file_list:
- file_list.append(os.path.join(file_list[0],'2-name2text.txt'))
- file_list.append(os.path.join(file_list[0],'3-bert'))
- file_list.append(os.path.join(file_list[0],'4-cnhubert'))
- file_list.append(os.path.join(file_list[0],'5-wav32k'))
- file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv'))
- for file in file_list:
- if os.path.exists(file):pass
- else:missing_files.append(file)
- if missing_files:
- if is_train:
- for missing_file in missing_files:
- if missing_file != '':
- gr.Warning(missing_file)
- gr.Warning(i18n('以下文件或文件夹不存在:'))
- else:
- for missing_file in missing_files:
- if missing_file != '':
- gr.Warning(missing_file)
- if file_list[-1]==[''] and is_dataset_processing:
- pass
- else:
- gr.Warning(i18n('以下文件或文件夹不存在:'))
-
-if os.path.exists('GPT_SoVITS/text/G2PWModel'):...
-else:
- cmd = '"%s" GPT_SoVITS/download.py'%python_exec
- p = Popen(cmd, shell=True)
- p.wait()
-
-with gr.Blocks(title="GPT-SoVITS WebUI") as app:
- gr.Markdown(
- value=
- i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
- )
- gr.Markdown(
- value=
- i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
- )
-
- with gr.Tabs():
- with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
- gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
- with gr.Row():
- if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True)
- uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"))
- gr.Markdown(value=i18n("0b-语音切分工具"))
- with gr.Row():
- with gr.Column(scale=3):
- with gr.Row():
- slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
- slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
- with gr.Row():
- threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
- min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
- min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
- hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
- max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
- with gr.Row():
- _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
- alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
- n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
- with gr.Row():
- slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
- open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
- close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
- gr.Markdown(value=i18n("0bb-语音降噪工具"))
- with gr.Row():
- with gr.Column(scale=3):
- with gr.Row():
- denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="")
- denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt")
- with gr.Row():
- denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息"))
- open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True)
- close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False)
- gr.Markdown(value=i18n("0c-中文批量离线ASR工具"))
- with gr.Row():
- with gr.Column(scale=3):
- with gr.Row():
- asr_inp_dir = gr.Textbox(
- label=i18n("输入文件夹路径"),
- value="D:\\GPT-SoVITS\\raw\\xxx",
- interactive=True,
- )
- asr_opt_dir = gr.Textbox(
- label = i18n("输出文件夹路径"),
- value = "output/asr_opt",
- interactive = True,
- )
- with gr.Row():
- asr_model = gr.Dropdown(
- label = i18n("ASR 模型"),
- choices = list(asr_dict.keys()),
- interactive = True,
- value="达摩 ASR (中文)"
- )
- asr_size = gr.Dropdown(
- label = i18n("ASR 模型尺寸"),
- choices = ["large"],
- interactive = True,
- value="large"
- )
- asr_lang = gr.Dropdown(
- label = i18n("ASR 语言设置"),
- choices = ["zh","yue"],
- interactive = True,
- value="zh"
- )
- asr_precision = gr.Dropdown(
- label = i18n("数据类型精度"),
- choices = ["float32"],
- interactive = True,
- value="float32"
- )
- with gr.Row():
- asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))
- open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True)
- close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
-
- def change_lang_choices(key): #根据选择的模型修改可选的语言
- # return gr.Dropdown(choices=asr_dict[key]['lang'])
- return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
- def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
- # return gr.Dropdown(choices=asr_dict[key]['size'])
- return {"__type__": "update", "choices": asr_dict[key]['size'],"value":asr_dict[key]['size'][-1]}
- def change_precision_choices(key): #根据选择的模型修改可选的语言
- if key =="Faster Whisper (多语种)":
- if default_batch_size <= 4:
- precision = 'int8'
- elif is_half:
- precision = 'float16'
- else:
- precision = 'float32'
- else:
- precision = 'float32'
- # return gr.Dropdown(choices=asr_dict[key]['precision'])
- return {"__type__": "update", "choices": asr_dict[key]['precision'],"value":precision}
- asr_model.change(change_lang_choices, [asr_model], [asr_lang])
- asr_model.change(change_size_choices, [asr_model], [asr_size])
- asr_model.change(change_precision_choices, [asr_model], [asr_precision])
-
-
- gr.Markdown(value=i18n("0d-语音文本校对标注工具"))
- with gr.Row():
- if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
- path_list = gr.Textbox(
- label=i18n(".list标注文件的路径"),
- value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
- interactive=True,
- )
- label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
- if_label.change(change_label, [if_label,path_list], [label_info])
- if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
-
- with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
- with gr.Row():
- exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
- gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
- version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2'])
- pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True)
- pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True)
- pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True)
- with gr.TabItem(i18n("1A-训练集格式化工具")):
- gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
- with gr.Row():
- inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
- inp_wav_dir = gr.Textbox(
- label=i18n("*训练集音频文件目录"),
- # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
- interactive=True,
- placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。")
- )
- gr.Markdown(value=i18n("1Aa-文本内容"))
- with gr.Row():
- gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False)
- button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True)
- button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False)
- info1a=gr.Textbox(label=i18n("文本进程输出信息"))
- gr.Markdown(value=i18n("1Ab-SSL自监督特征提取"))
- with gr.Row():
- gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False)
- button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True)
- button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False)
- info1b=gr.Textbox(label=i18n("SSL进程输出信息"))
- gr.Markdown(value=i18n("1Ac-语义token提取"))
- with gr.Row():
- gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
- button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True)
- button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False)
- info1c=gr.Textbox(label=i18n("语义token提取进程输出信息"))
- gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连"))
- with gr.Row():
- button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True)
- button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False)
- info1abc=gr.Textbox(label=i18n("一键三连进程输出信息"))
-
- open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir])
- close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
- open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir])
- close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
- open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button,asr_inp_dir,inp_wav_dir])
- close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])
-
- button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
- button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
- button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
- button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
- button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
- button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
- button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
- button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
- with gr.TabItem(i18n("1B-微调训练")):
- gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。"))
- with gr.Row():
- batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
- total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True)
- text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True)
- save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True)
- if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
- if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
- gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
- with gr.Row():
- button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True)
- button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False)
- info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息"))
- gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。"))
- with gr.Row():
- batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
- total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
- if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True)
- if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
- if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
- save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
- gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
- with gr.Row():
- button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True)
- button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False)
- info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息"))
- button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close])
- button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
- button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close])
- button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
- with gr.TabItem(i18n("1C-推理")):
- gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
- with gr.Row():
- GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True)
- SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True)
- gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
- refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
- refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
- with gr.Row():
- if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True)
- tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息"))
- if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info])
- version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown])
- with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
- app.queue(concurrency_count=511, max_size=1022).launch(
- server_name="0.0.0.0",
- inbrowser=True,
- share=True,
- server_port=webui_port_main,
- quiet=True,
+import os,sys
+if len(sys.argv)==1:sys.argv.append('v2')
+version="v1"if sys.argv[1]=="v1" else"v2"
+os.environ["version"]=version
+now_dir = os.getcwd()
+sys.path.insert(0, now_dir)
+import warnings
+warnings.filterwarnings("ignore")
+import json,yaml,torch,pdb,re,shutil
+import platform
+import psutil
+import signal
+torch.manual_seed(233333)
+tmp = os.path.join(now_dir, "TEMP")
+os.makedirs(tmp, exist_ok=True)
+os.environ["TEMP"] = tmp
+if(os.path.exists(tmp)):
+ for name in os.listdir(tmp):
+ if(name=="jieba.cache"):continue
+ path="%s/%s"%(tmp,name)
+ delete=os.remove if os.path.isfile(path) else shutil.rmtree
+ try:
+ delete(path)
+ except Exception as e:
+ print(str(e))
+ pass
+import site
+site_packages_roots = []
+for path in site.getsitepackages():
+ if "packages" in path:
+ site_packages_roots.append(path)
+if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir]
+#os.environ["OPENBLAS_NUM_THREADS"] = "4"
+os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
+os.environ["all_proxy"] = ""
+for site_packages_root in site_packages_roots:
+ if os.path.exists(site_packages_root):
+ try:
+ with open("%s/users.pth" % (site_packages_root), "w") as f:
+ f.write(
+ "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5"
+ % (now_dir, now_dir, now_dir, now_dir, now_dir)
+ )
+ break
+ except PermissionError:
+ pass
+from tools import my_utils
+import traceback
+import shutil
+import pdb
+from subprocess import Popen
+import signal
+from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share
+from tools.i18n.i18n import I18nAuto, scan_language_list
+language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto"
+os.environ["language"]=language
+i18n = I18nAuto(language=language)
+from scipy.io import wavfile
+from tools.my_utils import load_audio
+from multiprocessing import cpu_count
+# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
+import gradio.analytics as analytics
+analytics.version_check = lambda:None
+import gradio as gr
+n_cpu=cpu_count()
+
+ngpu = torch.cuda.device_count()
+gpu_infos = []
+mem = []
+if_gpu_ok = False
+
+# 判断是否有能用来训练和加速推理的N卡
+ok_gpu_keywords={"10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060","H"}
+set_gpu_numbers=set()
+if torch.cuda.is_available() or ngpu != 0:
+ for i in range(ngpu):
+ gpu_name = torch.cuda.get_device_name(i)
+ if any(value in gpu_name.upper()for value in ok_gpu_keywords):
+ # A10#A100#V100#A40#P40#M40#K80#A4500
+ if_gpu_ok = True # 至少有一张能用的N卡
+ gpu_infos.append("%s\t%s" % (i, gpu_name))
+ set_gpu_numbers.add(i)
+ mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
+# # 判断是否支持mps加速
+# if torch.backends.mps.is_available():
+# if_gpu_ok = True
+# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
+# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
+
+if if_gpu_ok and len(gpu_infos) > 0:
+ gpu_info = "\n".join(gpu_infos)
+ default_batch_size = min(mem) // 2
+else:
+ gpu_info = ("%s\t%s" % ("0", "CPU"))
+ gpu_infos.append("%s\t%s" % ("0", "CPU"))
+ set_gpu_numbers.add(0)
+ default_batch_size = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2)
+gpus = "-".join([i[0] for i in gpu_infos])
+default_gpu_numbers=str(sorted(list(set_gpu_numbers))[0])
+def fix_gpu_number(input):#将越界的number强制改到界内
+ try:
+ if(int(input)not in set_gpu_numbers):return default_gpu_numbers
+ except:return input
+ return input
+def fix_gpu_numbers(inputs):
+ output=[]
+ try:
+ for input in inputs.split(","):output.append(str(fix_gpu_number(input)))
+ return ",".join(output)
+ except:
+ return inputs
+
+pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
+pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
+
+pretrained_model_list = (pretrained_sovits_name[-int(version[-1])+2],pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"),pretrained_gpt_name[-int(version[-1])+2],"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large","GPT_SoVITS/pretrained_models/chinese-hubert-base")
+
+_=''
+for i in pretrained_model_list:
+ if os.path.exists(i):...
+ else:_+=f'\n {i}'
+if _:
+ print("warning:",i18n('以下模型不存在:')+_)
+
+_ =[[],[]]
+for i in range(2):
+ if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
+ else:_[0].append("")##没有下pretrained模型的,说不定他们是想自己从零训底模呢
+ if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
+ else:_[-1].append("")
+pretrained_gpt_name,pretrained_sovits_name = _
+
+SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
+GPT_weight_root=["GPT_weights_v2","GPT_weights"]
+for root in SoVITS_weight_root+GPT_weight_root:
+ os.makedirs(root,exist_ok=True)
+def get_weights_names():
+ SoVITS_names = [name for name in pretrained_sovits_name if name!=""]
+ for path in SoVITS_weight_root:
+ for name in os.listdir(path):
+ if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
+ GPT_names = [name for name in pretrained_gpt_name if name!=""]
+ for path in GPT_weight_root:
+ for name in os.listdir(path):
+ if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
+ return SoVITS_names, GPT_names
+
+SoVITS_names,GPT_names = get_weights_names()
+for path in SoVITS_weight_root+GPT_weight_root:
+ os.makedirs(path,exist_ok=True)
+
+
+def custom_sort_key(s):
+ # 使用正则表达式提取字符串中的数字部分和非数字部分
+ parts = re.split('(\d+)', s)
+ # 将数字部分转换为整数,非数字部分保持不变
+ parts = [int(part) if part.isdigit() else part for part in parts]
+ return parts
+
+def change_choices():
+ SoVITS_names, GPT_names = get_weights_names()
+ return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
+
+p_label=None
+p_uvr5=None
+p_asr=None
+p_denoise=None
+p_tts_inference=None
+
+def kill_proc_tree(pid, including_parent=True):
+ try:
+ parent = psutil.Process(pid)
+ except psutil.NoSuchProcess:
+ # Process already terminated
+ return
+
+ children = parent.children(recursive=True)
+ for child in children:
+ try:
+ os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
+ except OSError:
+ pass
+ if including_parent:
+ try:
+ os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
+ except OSError:
+ pass
+
+system=platform.system()
+def kill_process(pid):
+ if(system=="Windows"):
+ cmd = "taskkill /t /f /pid %s" % pid
+ os.system(cmd)
+ else:
+ kill_proc_tree(pid)
+
+
+def change_label(if_label,path_list):
+ global p_label
+ if(if_label==True and p_label==None):
+ path_list=my_utils.clean_path(path_list)
+ cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share)
+ yield i18n("打标工具WebUI已开启")
+ print(cmd)
+ p_label = Popen(cmd, shell=True)
+ elif(if_label==False and p_label!=None):
+ kill_process(p_label.pid)
+ p_label=None
+ yield i18n("打标工具WebUI已关闭")
+
+def change_uvr5(if_uvr5):
+ global p_uvr5
+ if(if_uvr5==True and p_uvr5==None):
+ cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share)
+ yield i18n("UVR5已开启")
+ print(cmd)
+ p_uvr5 = Popen(cmd, shell=True)
+ elif(if_uvr5==False and p_uvr5!=None):
+ kill_process(p_uvr5.pid)
+ p_uvr5=None
+ yield i18n("UVR5已关闭")
+
+def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path):
+ global p_tts_inference
+ if(if_tts==True and p_tts_inference==None):
+ os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path)
+ os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path)
+ os.environ["cnhubert_base_path"]=cnhubert_base_path
+ os.environ["bert_path"]=bert_path
+ os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_number(gpu_number)
+ os.environ["is_half"]=str(is_half)
+ os.environ["infer_ttswebui"]=str(webui_port_infer_tts)
+ os.environ["is_share"]=str(is_share)
+ cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language)
+ yield i18n("TTS推理进程已开启")
+ print(cmd)
+ p_tts_inference = Popen(cmd, shell=True)
+ elif(if_tts==False and p_tts_inference!=None):
+ kill_process(p_tts_inference.pid)
+ p_tts_inference=None
+ yield i18n("TTS推理进程已关闭")
+
+from tools.asr.config import asr_dict
+def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision):
+ global p_asr
+ if(p_asr==None):
+ asr_inp_dir=my_utils.clean_path(asr_inp_dir)
+ asr_opt_dir=my_utils.clean_path(asr_opt_dir)
+ check_for_exists([asr_inp_dir])
+ cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}'
+ cmd += f' -i "{asr_inp_dir}"'
+ cmd += f' -o "{asr_opt_dir}"'
+ cmd += f' -s {asr_model_size}'
+ cmd += f' -l {asr_lang}'
+ cmd += f" -p {asr_precision}"
+ output_file_name = os.path.basename(asr_inp_dir)
+ output_folder = asr_opt_dir or "output/asr_opt"
+ output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list')
+ yield "ASR任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"}
+ print(cmd)
+ p_asr = Popen(cmd, shell=True)
+ p_asr.wait()
+ p_asr=None
+ yield f"ASR任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":asr_inp_dir}
+ else:
+ yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"}
+ # return None
+
+def close_asr():
+ global p_asr
+ if(p_asr!=None):
+ kill_process(p_asr.pid)
+ p_asr=None
+ return "已终止ASR进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+def open_denoise(denoise_inp_dir, denoise_opt_dir):
+ global p_denoise
+ if(p_denoise==None):
+ denoise_inp_dir=my_utils.clean_path(denoise_inp_dir)
+ denoise_opt_dir=my_utils.clean_path(denoise_opt_dir)
+ check_for_exists([denoise_inp_dir])
+ cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32")
+
+ yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}
+ print(cmd)
+ p_denoise = Popen(cmd, shell=True)
+ p_denoise.wait()
+ p_denoise=None
+ yield f"语音降噪任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":denoise_opt_dir}, {"__type__":"update","value":denoise_opt_dir}
+ else:
+ yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}
+ # return None
+
+def close_denoise():
+ global p_denoise
+ if(p_denoise!=None):
+ kill_process(p_denoise.pid)
+ p_denoise=None
+ return "已终止语音降噪进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+
+p_train_SoVITS=None
+def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D):
+ global p_train_SoVITS
+ if(p_train_SoVITS==None):
+ with open("GPT_SoVITS/configs/s2.json")as f:
+ data=f.read()
+ data=json.loads(data)
+ s2_dir="%s/%s"%(exp_root,exp_name)
+ os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True)
+ check_for_exists([s2_dir],is_train=True)
+ if(is_half==False):
+ data["train"]["fp16_run"]=False
+ batch_size=max(1,batch_size//2)
+ data["train"]["batch_size"]=batch_size
+ data["train"]["epochs"]=total_epoch
+ data["train"]["text_low_lr_rate"]=text_low_lr_rate
+ data["train"]["pretrained_s2G"]=pretrained_s2G
+ data["train"]["pretrained_s2D"]=pretrained_s2D
+ data["train"]["if_save_latest"]=if_save_latest
+ data["train"]["if_save_every_weights"]=if_save_every_weights
+ data["train"]["save_every_epoch"]=save_every_epoch
+ data["train"]["gpu_numbers"]=gpu_numbers1Ba
+ data["model"]["version"]=version
+ data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir
+ data["save_weight_dir"]=SoVITS_weight_root[-int(version[-1])+2]
+ data["name"]=exp_name
+ data["version"]=version
+ tmp_config_path="%s/tmp_s2.json"%tmp
+ with open(tmp_config_path,"w")as f:f.write(json.dumps(data))
+
+ cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path)
+ yield "SoVITS训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
+ print(cmd)
+ p_train_SoVITS = Popen(cmd, shell=True)
+ p_train_SoVITS.wait()
+ p_train_SoVITS=None
+ yield "SoVITS训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+ else:
+ yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
+
+def close1Ba():
+ global p_train_SoVITS
+ if(p_train_SoVITS!=None):
+ kill_process(p_train_SoVITS.pid)
+ p_train_SoVITS=None
+ return "已终止SoVITS训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+
+p_train_GPT=None
+def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1):
+ global p_train_GPT
+ if(p_train_GPT==None):
+ with open("GPT_SoVITS/configs/s1longer.yaml"if version=="v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f:
+ data=f.read()
+ data=yaml.load(data, Loader=yaml.FullLoader)
+ s1_dir="%s/%s"%(exp_root,exp_name)
+ os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True)
+ check_for_exists([s1_dir],is_train=True)
+ if(is_half==False):
+ data["train"]["precision"]="32"
+ batch_size = max(1, batch_size // 2)
+ data["train"]["batch_size"]=batch_size
+ data["train"]["epochs"]=total_epoch
+ data["pretrained_s1"]=pretrained_s1
+ data["train"]["save_every_n_epoch"]=save_every_epoch
+ data["train"]["if_save_every_weights"]=if_save_every_weights
+ data["train"]["if_save_latest"]=if_save_latest
+ data["train"]["if_dpo"]=if_dpo
+ data["train"]["half_weights_save_dir"]=GPT_weight_root[-int(version[-1])+2]
+ data["train"]["exp_name"]=exp_name
+ data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir
+ data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir
+ data["output_dir"]="%s/logs_s1"%s1_dir
+ # data["version"]=version
+
+ os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_numbers(gpu_numbers.replace("-",","))
+ os.environ["hz"]="25hz"
+ tmp_config_path="%s/tmp_s1.yaml"%tmp
+ with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False))
+ # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir)
+ cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path)
+ yield "GPT训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
+ print(cmd)
+ p_train_GPT = Popen(cmd, shell=True)
+ p_train_GPT.wait()
+ p_train_GPT=None
+ yield "GPT训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+ else:
+ yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}
+
+def close1Bb():
+ global p_train_GPT
+ if(p_train_GPT!=None):
+ kill_process(p_train_GPT.pid)
+ p_train_GPT=None
+ return "已终止GPT训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+
+ps_slice=[]
+def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts):
+ global ps_slice
+ inp = my_utils.clean_path(inp)
+ opt_root = my_utils.clean_path(opt_root)
+ check_for_exists([inp])
+ if(os.path.exists(inp)==False):
+ yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+ return
+ if os.path.isfile(inp):n_parts=1
+ elif os.path.isdir(inp):pass
+ else:
+ yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+ return
+ if (ps_slice == []):
+ for i_part in range(n_parts):
+ cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts)
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps_slice.append(p)
+ yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+ for p in ps_slice:
+ p.wait()
+ ps_slice=[]
+ yield "切割结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}
+ else:
+ yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
+
+def close_slice():
+ global ps_slice
+ if (ps_slice != []):
+ for p_slice in ps_slice:
+ try:
+ kill_process(p_slice.pid)
+ except:
+ traceback.print_exc()
+ ps_slice=[]
+ return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
+ps1a=[]
+def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir):
+ global ps1a
+ inp_text = my_utils.clean_path(inp_text)
+ inp_wav_dir = my_utils.clean_path(inp_wav_dir)
+ check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True)
+ if (ps1a == []):
+ opt_dir="%s/%s"%(exp_root,exp_name)
+ config={
+ "inp_text":inp_text,
+ "inp_wav_dir":inp_wav_dir,
+ "exp_name":exp_name,
+ "opt_dir":opt_dir,
+ "bert_pretrained_dir":bert_pretrained_dir,
+ }
+ gpu_names=gpu_numbers.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ "is_half": str(is_half)
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1a.append(p)
+ yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1a:
+ p.wait()
+ opt = []
+ for i_part in range(all_parts):
+ txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
+ with open(txt_path, "r", encoding="utf8") as f:
+ opt += f.read().strip("\n").split("\n")
+ os.remove(txt_path)
+ path_text = "%s/2-name2text.txt" % opt_dir
+ with open(path_text, "w", encoding="utf8") as f:
+ f.write("\n".join(opt) + "\n")
+ ps1a=[]
+ if len("".join(opt)) > 0:
+ yield "文本进程成功", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+ else:
+ yield "文本进程失败", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+ else:
+ yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
+def close1a():
+ global ps1a
+ if (ps1a != []):
+ for p1a in ps1a:
+ try:
+ kill_process(p1a.pid)
+ except:
+ traceback.print_exc()
+ ps1a=[]
+ return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
+ps1b=[]
+def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir):
+ global ps1b
+ inp_text = my_utils.clean_path(inp_text)
+ inp_wav_dir = my_utils.clean_path(inp_wav_dir)
+ check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True)
+ if (ps1b == []):
+ config={
+ "inp_text":inp_text,
+ "inp_wav_dir":inp_wav_dir,
+ "exp_name":exp_name,
+ "opt_dir":"%s/%s"%(exp_root,exp_name),
+ "cnhubert_base_dir":ssl_pretrained_dir,
+ "is_half": str(is_half)
+ }
+ gpu_names=gpu_numbers.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1b.append(p)
+ yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1b:
+ p.wait()
+ ps1b=[]
+ yield "SSL提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+ else:
+ yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
+def close1b():
+ global ps1b
+ if (ps1b != []):
+ for p1b in ps1b:
+ try:
+ kill_process(p1b.pid)
+ except:
+ traceback.print_exc()
+ ps1b=[]
+ return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
+ps1c=[]
+def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path):
+ global ps1c
+ inp_text = my_utils.clean_path(inp_text)
+ check_for_exists([inp_text,''], is_dataset_processing=True)
+ if (ps1c == []):
+ opt_dir="%s/%s"%(exp_root,exp_name)
+ config={
+ "inp_text":inp_text,
+ "exp_name":exp_name,
+ "opt_dir":opt_dir,
+ "pretrained_s2G":pretrained_s2G_path,
+ "s2config_path":"GPT_SoVITS/configs/s2.json",
+ "is_half": str(is_half)
+ }
+ gpu_names=gpu_numbers.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1c.append(p)
+ yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1c:
+ p.wait()
+ opt = ["item_name\tsemantic_audio"]
+ path_semantic = "%s/6-name2semantic.tsv" % opt_dir
+ for i_part in range(all_parts):
+ semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
+ with open(semantic_path, "r", encoding="utf8") as f:
+ opt += f.read().strip("\n").split("\n")
+ os.remove(semantic_path)
+ with open(path_semantic, "w", encoding="utf8") as f:
+ f.write("\n".join(opt) + "\n")
+ ps1c=[]
+ yield "语义token提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}
+ else:
+ yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
+def close1c():
+ global ps1c
+ if (ps1c != []):
+ for p1c in ps1c:
+ try:
+ kill_process(p1c.pid)
+ except:
+ traceback.print_exc()
+ ps1c=[]
+ return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G
+ps1abc=[]
+def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path):
+ global ps1abc
+ inp_text = my_utils.clean_path(inp_text)
+ inp_wav_dir = my_utils.clean_path(inp_wav_dir)
+ check_for_exists([inp_text,inp_wav_dir])
+ if (ps1abc == []):
+ opt_dir="%s/%s"%(exp_root,exp_name)
+ try:
+ #############################1a
+ path_text="%s/2-name2text.txt" % opt_dir
+ if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)):
+ config={
+ "inp_text":inp_text,
+ "inp_wav_dir":inp_wav_dir,
+ "exp_name":exp_name,
+ "opt_dir":opt_dir,
+ "bert_pretrained_dir":bert_pretrained_dir,
+ "is_half": str(is_half)
+ }
+ gpu_names=gpu_numbers1a.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1abc.append(p)
+ yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1abc:p.wait()
+
+ opt = []
+ for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part)
+ txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part)
+ with open(txt_path, "r",encoding="utf8") as f:
+ opt += f.read().strip("\n").split("\n")
+ os.remove(txt_path)
+ with open(path_text, "w",encoding="utf8") as f:
+ f.write("\n".join(opt) + "\n")
+ assert len("".join(opt)) > 0, "1Aa-文本获取进程失败"
+ yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ ps1abc=[]
+ #############################1b
+ config={
+ "inp_text":inp_text,
+ "inp_wav_dir":inp_wav_dir,
+ "exp_name":exp_name,
+ "opt_dir":opt_dir,
+ "cnhubert_base_dir":ssl_pretrained_dir,
+ }
+ gpu_names=gpu_numbers1Ba.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1abc.append(p)
+ yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1abc:p.wait()
+ yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ ps1abc=[]
+ #############################1c
+ path_semantic = "%s/6-name2semantic.tsv" % opt_dir
+ if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)):
+ config={
+ "inp_text":inp_text,
+ "exp_name":exp_name,
+ "opt_dir":opt_dir,
+ "pretrained_s2G":pretrained_s2G_path,
+ "s2config_path":"GPT_SoVITS/configs/s2.json",
+ }
+ gpu_names=gpu_numbers1c.split("-")
+ all_parts=len(gpu_names)
+ for i_part in range(all_parts):
+ config.update(
+ {
+ "i_part": str(i_part),
+ "all_parts": str(all_parts),
+ "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]),
+ }
+ )
+ os.environ.update(config)
+ cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec
+ print(cmd)
+ p = Popen(cmd, shell=True)
+ ps1abc.append(p)
+ yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ for p in ps1abc:p.wait()
+
+ opt = ["item_name\tsemantic_audio"]
+ for i_part in range(all_parts):
+ semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
+ with open(semantic_path, "r",encoding="utf8") as f:
+ opt += f.read().strip("\n").split("\n")
+ os.remove(semantic_path)
+ with open(path_semantic, "w",encoding="utf8") as f:
+ f.write("\n".join(opt) + "\n")
+ yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+ ps1abc = []
+ yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+ except:
+ traceback.print_exc()
+ close1abc()
+ yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+ else:
+ yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}
+
+def close1abc():
+ global ps1abc
+ if (ps1abc != []):
+ for p1abc in ps1abc:
+ try:
+ kill_process(p1abc.pid)
+ except:
+ traceback.print_exc()
+ ps1abc=[]
+ return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False}
+
+def switch_version(version_):
+ os.environ['version']=version_
+ global version
+ version = version_
+ if pretrained_sovits_name[-int(version[-1])+2] !='' and pretrained_gpt_name[-int(version[-1])+2] !='':...
+ else:
+ gr.Warning(i18n(f'未下载{version.upper()}模型'))
+ return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}
+
+def check_for_exists(file_list=None,is_train=False,is_dataset_processing=False):
+ missing_files=[]
+ if is_train == True and file_list:
+ file_list.append(os.path.join(file_list[0],'2-name2text.txt'))
+ file_list.append(os.path.join(file_list[0],'3-bert'))
+ file_list.append(os.path.join(file_list[0],'4-cnhubert'))
+ file_list.append(os.path.join(file_list[0],'5-wav32k'))
+ file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv'))
+ for file in file_list:
+ if os.path.exists(file):pass
+ else:missing_files.append(file)
+ if missing_files:
+ if is_train:
+ for missing_file in missing_files:
+ if missing_file != '':
+ gr.Warning(missing_file)
+ gr.Warning(i18n('以下文件或文件夹不存在:'))
+ else:
+ for missing_file in missing_files:
+ if missing_file != '':
+ gr.Warning(missing_file)
+ if file_list[-1]==[''] and is_dataset_processing:
+ pass
+ else:
+ gr.Warning(i18n('以下文件或文件夹不存在:'))
+
+if os.path.exists('GPT_SoVITS/text/G2PWModel'):...
+else:
+ cmd = '"%s" GPT_SoVITS/download.py'%python_exec
+ p = Popen(cmd, shell=True)
+ p.wait()
+
+with gr.Blocks(title="GPT-SoVITS WebUI") as app:
+ gr.Markdown(
+ value=
+ i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
+ )
+ gr.Markdown(
+ value=
+ i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e")
+ )
+
+ with gr.Tabs():
+ with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标
+ gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具"))
+ with gr.Row():
+ if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True)
+ uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息"))
+ gr.Markdown(value=i18n("0b-语音切分工具"))
+ with gr.Row():
+ with gr.Column(scale=3):
+ with gr.Row():
+ slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="")
+ slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt")
+ with gr.Row():
+ threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34")
+ min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000")
+ min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300")
+ hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10")
+ max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500")
+ with gr.Row():
+ _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True)
+ alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True)
+ n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True)
+ with gr.Row():
+ slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息"))
+ open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True)
+ close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False)
+ gr.Markdown(value=i18n("0bb-语音降噪工具"))
+ with gr.Row():
+ with gr.Column(scale=3):
+ with gr.Row():
+ denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="")
+ denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt")
+ with gr.Row():
+ denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息"))
+ open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True)
+ close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False)
+ gr.Markdown(value=i18n("0c-中文批量离线ASR工具"))
+ with gr.Row():
+ with gr.Column(scale=3):
+ with gr.Row():
+ asr_inp_dir = gr.Textbox(
+ label=i18n("输入文件夹路径"),
+ value="D:\\GPT-SoVITS\\raw\\xxx",
+ interactive=True,
+ )
+ asr_opt_dir = gr.Textbox(
+ label = i18n("输出文件夹路径"),
+ value = "output/asr_opt",
+ interactive = True,
+ )
+ with gr.Row():
+ asr_model = gr.Dropdown(
+ label = i18n("ASR 模型"),
+ choices = list(asr_dict.keys()),
+ interactive = True,
+ value="达摩 ASR (中文)"
+ )
+ asr_size = gr.Dropdown(
+ label = i18n("ASR 模型尺寸"),
+ choices = ["large"],
+ interactive = True,
+ value="large"
+ )
+ asr_lang = gr.Dropdown(
+ label = i18n("ASR 语言设置"),
+ choices = ["zh","yue"],
+ interactive = True,
+ value="zh"
+ )
+ asr_precision = gr.Dropdown(
+ label = i18n("数据类型精度"),
+ choices = ["float32"],
+ interactive = True,
+ value="float32"
+ )
+ with gr.Row():
+ asr_info = gr.Textbox(label=i18n("ASR进程输出信息"))
+ open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True)
+ close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False)
+
+ def change_lang_choices(key): #根据选择的模型修改可选的语言
+ # return gr.Dropdown(choices=asr_dict[key]['lang'])
+ return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]}
+ def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸
+ # return gr.Dropdown(choices=asr_dict[key]['size'])
+ return {"__type__": "update", "choices": asr_dict[key]['size'],"value":asr_dict[key]['size'][-1]}
+ def change_precision_choices(key): #根据选择的模型修改可选的语言
+ if key =="Faster Whisper (多语种)":
+ if default_batch_size <= 4:
+ precision = 'int8'
+ elif is_half:
+ precision = 'float16'
+ else:
+ precision = 'float32'
+ else:
+ precision = 'float32'
+ # return gr.Dropdown(choices=asr_dict[key]['precision'])
+ return {"__type__": "update", "choices": asr_dict[key]['precision'],"value":precision}
+ asr_model.change(change_lang_choices, [asr_model], [asr_lang])
+ asr_model.change(change_size_choices, [asr_model], [asr_size])
+ asr_model.change(change_precision_choices, [asr_model], [asr_precision])
+
+
+ gr.Markdown(value=i18n("0d-语音文本校对标注工具"))
+ with gr.Row():
+ if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
+ path_list = gr.Textbox(
+ label=i18n(".list标注文件的路径"),
+ value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
+ interactive=True,
+ )
+ label_info = gr.Textbox(label=i18n("打标工具进程输出信息"))
+ if_label.change(change_label, [if_label,path_list], [label_info])
+ if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info])
+
+ with gr.TabItem(i18n("1-GPT-SoVITS-TTS")):
+ with gr.Row():
+ exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True)
+ gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False)
+ version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2'])
+ pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True)
+ pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True)
+ pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True)
+ with gr.TabItem(i18n("1A-训练集格式化工具")):
+ gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹"))
+ with gr.Row():
+ inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True)
+ inp_wav_dir = gr.Textbox(
+ label=i18n("*训练集音频文件目录"),
+ # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
+ interactive=True,
+ placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。")
+ )
+ gr.Markdown(value=i18n("1Aa-文本内容"))
+ with gr.Row():
+ gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False)
+ button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True)
+ button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False)
+ info1a=gr.Textbox(label=i18n("文本进程输出信息"))
+ gr.Markdown(value=i18n("1Ab-SSL自监督特征提取"))
+ with gr.Row():
+ gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False)
+ button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True)
+ button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False)
+ info1b=gr.Textbox(label=i18n("SSL进程输出信息"))
+ gr.Markdown(value=i18n("1Ac-语义token提取"))
+ with gr.Row():
+ gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True)
+ button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True)
+ button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False)
+ info1c=gr.Textbox(label=i18n("语义token提取进程输出信息"))
+ gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连"))
+ with gr.Row():
+ button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True)
+ button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False)
+ info1abc=gr.Textbox(label=i18n("一键三连进程输出信息"))
+
+ open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir])
+ close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button])
+ open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir])
+ close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button])
+ open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button,asr_inp_dir,inp_wav_dir])
+ close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button])
+
+ button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close])
+ button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close])
+ button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close])
+ button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close])
+ button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close])
+ button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close])
+ button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close])
+ button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close])
+ with gr.TabItem(i18n("1B-微调训练")):
+ gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。"))
+ with gr.Row():
+ batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
+ total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True)
+ text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True)
+ save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True)
+ if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
+ if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
+ gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
+ with gr.Row():
+ button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True)
+ button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False)
+ info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息"))
+ gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。"))
+ with gr.Row():
+ batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True)
+ total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True)
+ if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True)
+ if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True)
+ if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True)
+ save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True)
+ gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True)
+ with gr.Row():
+ button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True)
+ button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False)
+ info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息"))
+ button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close])
+ button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close])
+ button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close])
+ button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close])
+ with gr.TabItem(i18n("1C-推理")):
+ gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。"))
+ with gr.Row():
+ GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True)
+ SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True)
+ gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True)
+ refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
+ refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown])
+ with gr.Row():
+ if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True)
+ tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息"))
+ if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info])
+ version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown])
+ with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音"))
+ app.queue(concurrency_count=511, max_size=1022).launch(
+ share=False,
+ show_error=True,
)
\ No newline at end of file