diff --git "a/webui.py" "b/webui.py" --- "a/webui.py" +++ "b/webui.py" @@ -1,1013 +1,1010 @@ -import os,sys -if len(sys.argv)==1:sys.argv.append('v2') -version="v1"if sys.argv[1]=="v1" else"v2" -os.environ["version"]=version -now_dir = os.getcwd() -sys.path.insert(0, now_dir) -import warnings -warnings.filterwarnings("ignore") -import json,yaml,torch,pdb,re,shutil -import platform -import psutil -import signal -torch.manual_seed(233333) -tmp = os.path.join(now_dir, "TEMP") -os.makedirs(tmp, exist_ok=True) -os.environ["TEMP"] = tmp -if(os.path.exists(tmp)): - for name in os.listdir(tmp): - if(name=="jieba.cache"):continue - path="%s/%s"%(tmp,name) - delete=os.remove if os.path.isfile(path) else shutil.rmtree - try: - delete(path) - except Exception as e: - print(str(e)) - pass -import site -site_packages_roots = [] -for path in site.getsitepackages(): - if "packages" in path: - site_packages_roots.append(path) -if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir] -#os.environ["OPENBLAS_NUM_THREADS"] = "4" -os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" -os.environ["all_proxy"] = "" -for site_packages_root in site_packages_roots: - if os.path.exists(site_packages_root): - try: - with open("%s/users.pth" % (site_packages_root), "w") as f: - f.write( - "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" - % (now_dir, now_dir, now_dir, now_dir, now_dir) - ) - break - except PermissionError: - pass -from tools import my_utils -import traceback -import shutil -import pdb -from subprocess import Popen -import signal -from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share -from tools.i18n.i18n import I18nAuto, scan_language_list -language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto" -os.environ["language"]=language -i18n = I18nAuto(language=language) -from scipy.io import wavfile -from tools.my_utils import load_audio -from multiprocessing import cpu_count -# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu -import gradio.analytics as analytics -analytics.version_check = lambda:None -import gradio as gr -n_cpu=cpu_count() - -ngpu = torch.cuda.device_count() -gpu_infos = [] -mem = [] -if_gpu_ok = False - -# 判断是否有能用来训练和加速推理的N卡 -ok_gpu_keywords={"10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060","H"} -set_gpu_numbers=set() -if torch.cuda.is_available() or ngpu != 0: - for i in range(ngpu): - gpu_name = torch.cuda.get_device_name(i) - if any(value in gpu_name.upper()for value in ok_gpu_keywords): - # A10#A100#V100#A40#P40#M40#K80#A4500 - if_gpu_ok = True # 至少有一张能用的N卡 - gpu_infos.append("%s\t%s" % (i, gpu_name)) - set_gpu_numbers.add(i) - mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4)) -# # 判断是否支持mps加速 -# if torch.backends.mps.is_available(): -# if_gpu_ok = True -# gpu_infos.append("%s\t%s" % ("0", "Apple GPU")) -# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存 - -if if_gpu_ok and len(gpu_infos) > 0: - gpu_info = "\n".join(gpu_infos) - default_batch_size = min(mem) // 2 -else: - gpu_info = ("%s\t%s" % ("0", "CPU")) - gpu_infos.append("%s\t%s" % ("0", "CPU")) - set_gpu_numbers.add(0) - default_batch_size = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2) -gpus = "-".join([i[0] for i in gpu_infos]) -default_gpu_numbers=str(sorted(list(set_gpu_numbers))[0]) -def fix_gpu_number(input):#将越界的number强制改到界内 - try: - if(int(input)not in set_gpu_numbers):return default_gpu_numbers - except:return input - return input -def fix_gpu_numbers(inputs): - output=[] - try: - for input in inputs.split(","):output.append(str(fix_gpu_number(input))) - return ",".join(output) - except: - return inputs - -pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"] -pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"] - -pretrained_model_list = (pretrained_sovits_name[-int(version[-1])+2],pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"),pretrained_gpt_name[-int(version[-1])+2],"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large","GPT_SoVITS/pretrained_models/chinese-hubert-base") - -_='' -for i in pretrained_model_list: - if os.path.exists(i):... - else:_+=f'\n {i}' -if _: - print("warning:",i18n('以下模型不存在:')+_) - -_ =[[],[]] -for i in range(2): - if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i]) - else:_[0].append("")##没有下pretrained模型的,说不定他们是想自己从零训底模呢 - if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i]) - else:_[-1].append("") -pretrained_gpt_name,pretrained_sovits_name = _ - -SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"] -GPT_weight_root=["GPT_weights_v2","GPT_weights"] -for root in SoVITS_weight_root+GPT_weight_root: - os.makedirs(root,exist_ok=True) -def get_weights_names(): - SoVITS_names = [name for name in pretrained_sovits_name if name!=""] - for path in SoVITS_weight_root: - for name in os.listdir(path): - if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name)) - GPT_names = [name for name in pretrained_gpt_name if name!=""] - for path in GPT_weight_root: - for name in os.listdir(path): - if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name)) - return SoVITS_names, GPT_names - -SoVITS_names,GPT_names = get_weights_names() -for path in SoVITS_weight_root+GPT_weight_root: - os.makedirs(path,exist_ok=True) - - -def custom_sort_key(s): - # 使用正则表达式提取字符串中的数字部分和非数字部分 - parts = re.split('(\d+)', s) - # 将数字部分转换为整数,非数字部分保持不变 - parts = [int(part) if part.isdigit() else part for part in parts] - return parts - -def change_choices(): - SoVITS_names, GPT_names = get_weights_names() - return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"} - -p_label=None -p_uvr5=None -p_asr=None -p_denoise=None -p_tts_inference=None - -def kill_proc_tree(pid, including_parent=True): - try: - parent = psutil.Process(pid) - except psutil.NoSuchProcess: - # Process already terminated - return - - children = parent.children(recursive=True) - for child in children: - try: - os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL - except OSError: - pass - if including_parent: - try: - os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL - except OSError: - pass - -system=platform.system() -def kill_process(pid): - if(system=="Windows"): - cmd = "taskkill /t /f /pid %s" % pid - os.system(cmd) - else: - kill_proc_tree(pid) - - -def change_label(if_label,path_list): - global p_label - if(if_label==True and p_label==None): - path_list=my_utils.clean_path(path_list) - cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share) - yield i18n("打标工具WebUI已开启") - print(cmd) - p_label = Popen(cmd, shell=True) - elif(if_label==False and p_label!=None): - kill_process(p_label.pid) - p_label=None - yield i18n("打标工具WebUI已关闭") - -def change_uvr5(if_uvr5): - global p_uvr5 - if(if_uvr5==True and p_uvr5==None): - cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share) - yield i18n("UVR5已开启") - print(cmd) - p_uvr5 = Popen(cmd, shell=True) - elif(if_uvr5==False and p_uvr5!=None): - kill_process(p_uvr5.pid) - p_uvr5=None - yield i18n("UVR5已关闭") - -def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): - global p_tts_inference - if(if_tts==True and p_tts_inference==None): - os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path) - os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path) - os.environ["cnhubert_base_path"]=cnhubert_base_path - os.environ["bert_path"]=bert_path - os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_number(gpu_number) - os.environ["is_half"]=str(is_half) - os.environ["infer_ttswebui"]=str(webui_port_infer_tts) - os.environ["is_share"]=str(is_share) - cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language) - yield i18n("TTS推理进程已开启") - print(cmd) - p_tts_inference = Popen(cmd, shell=True) - elif(if_tts==False and p_tts_inference!=None): - kill_process(p_tts_inference.pid) - p_tts_inference=None - yield i18n("TTS推理进程已关闭") - -from tools.asr.config import asr_dict -def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision): - global p_asr - if(p_asr==None): - asr_inp_dir=my_utils.clean_path(asr_inp_dir) - asr_opt_dir=my_utils.clean_path(asr_opt_dir) - check_for_exists([asr_inp_dir]) - cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}' - cmd += f' -i "{asr_inp_dir}"' - cmd += f' -o "{asr_opt_dir}"' - cmd += f' -s {asr_model_size}' - cmd += f' -l {asr_lang}' - cmd += f" -p {asr_precision}" - output_file_name = os.path.basename(asr_inp_dir) - output_folder = asr_opt_dir or "output/asr_opt" - output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') - yield "ASR任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"} - print(cmd) - p_asr = Popen(cmd, shell=True) - p_asr.wait() - p_asr=None - yield f"ASR任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":asr_inp_dir} - else: - yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"} - # return None - -def close_asr(): - global p_asr - if(p_asr!=None): - kill_process(p_asr.pid) - p_asr=None - return "已终止ASR进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} -def open_denoise(denoise_inp_dir, denoise_opt_dir): - global p_denoise - if(p_denoise==None): - denoise_inp_dir=my_utils.clean_path(denoise_inp_dir) - denoise_opt_dir=my_utils.clean_path(denoise_opt_dir) - check_for_exists([denoise_inp_dir]) - cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32") - - yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} - print(cmd) - p_denoise = Popen(cmd, shell=True) - p_denoise.wait() - p_denoise=None - yield f"语音降噪任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":denoise_opt_dir}, {"__type__":"update","value":denoise_opt_dir} - else: - yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} - # return None - -def close_denoise(): - global p_denoise - if(p_denoise!=None): - kill_process(p_denoise.pid) - p_denoise=None - return "已终止语音降噪进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - -p_train_SoVITS=None -def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D): - global p_train_SoVITS - if(p_train_SoVITS==None): - with open("GPT_SoVITS/configs/s2.json")as f: - data=f.read() - data=json.loads(data) - s2_dir="%s/%s"%(exp_root,exp_name) - os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) - check_for_exists([s2_dir],is_train=True) - if(is_half==False): - data["train"]["fp16_run"]=False - batch_size=max(1,batch_size//2) - data["train"]["batch_size"]=batch_size - data["train"]["epochs"]=total_epoch - data["train"]["text_low_lr_rate"]=text_low_lr_rate - data["train"]["pretrained_s2G"]=pretrained_s2G - data["train"]["pretrained_s2D"]=pretrained_s2D - data["train"]["if_save_latest"]=if_save_latest - data["train"]["if_save_every_weights"]=if_save_every_weights - data["train"]["save_every_epoch"]=save_every_epoch - data["train"]["gpu_numbers"]=gpu_numbers1Ba - data["model"]["version"]=version - data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir - data["save_weight_dir"]=SoVITS_weight_root[-int(version[-1])+2] - data["name"]=exp_name - data["version"]=version - tmp_config_path="%s/tmp_s2.json"%tmp - with open(tmp_config_path,"w")as f:f.write(json.dumps(data)) - - cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path) - yield "SoVITS训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True} - print(cmd) - p_train_SoVITS = Popen(cmd, shell=True) - p_train_SoVITS.wait() - p_train_SoVITS=None - yield "SoVITS训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - else: - yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True} - -def close1Ba(): - global p_train_SoVITS - if(p_train_SoVITS!=None): - kill_process(p_train_SoVITS.pid) - p_train_SoVITS=None - return "已终止SoVITS训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - -p_train_GPT=None -def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1): - global p_train_GPT - if(p_train_GPT==None): - with open("GPT_SoVITS/configs/s1longer.yaml"if version=="v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f: - data=f.read() - data=yaml.load(data, Loader=yaml.FullLoader) - s1_dir="%s/%s"%(exp_root,exp_name) - os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) - check_for_exists([s1_dir],is_train=True) - if(is_half==False): - data["train"]["precision"]="32" - batch_size = max(1, batch_size // 2) - data["train"]["batch_size"]=batch_size - data["train"]["epochs"]=total_epoch - data["pretrained_s1"]=pretrained_s1 - data["train"]["save_every_n_epoch"]=save_every_epoch - data["train"]["if_save_every_weights"]=if_save_every_weights - data["train"]["if_save_latest"]=if_save_latest - data["train"]["if_dpo"]=if_dpo - data["train"]["half_weights_save_dir"]=GPT_weight_root[-int(version[-1])+2] - data["train"]["exp_name"]=exp_name - data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir - data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir - data["output_dir"]="%s/logs_s1"%s1_dir - # data["version"]=version - - os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_numbers(gpu_numbers.replace("-",",")) - os.environ["hz"]="25hz" - tmp_config_path="%s/tmp_s1.yaml"%tmp - with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False)) - # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir) - cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path) - yield "GPT训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True} - print(cmd) - p_train_GPT = Popen(cmd, shell=True) - p_train_GPT.wait() - p_train_GPT=None - yield "GPT训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - else: - yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True} - -def close1Bb(): - global p_train_GPT - if(p_train_GPT!=None): - kill_process(p_train_GPT.pid) - p_train_GPT=None - return "已终止GPT训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - -ps_slice=[] -def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts): - global ps_slice - inp = my_utils.clean_path(inp) - opt_root = my_utils.clean_path(opt_root) - check_for_exists([inp]) - if(os.path.exists(inp)==False): - yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} - return - if os.path.isfile(inp):n_parts=1 - elif os.path.isdir(inp):pass - else: - yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} - return - if (ps_slice == []): - for i_part in range(n_parts): - cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts) - print(cmd) - p = Popen(cmd, shell=True) - ps_slice.append(p) - yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} - for p in ps_slice: - p.wait() - ps_slice=[] - yield "切割结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root} - else: - yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} - -def close_slice(): - global ps_slice - if (ps_slice != []): - for p_slice in ps_slice: - try: - kill_process(p_slice.pid) - except: - traceback.print_exc() - ps_slice=[] - return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - -ps1a=[] -def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): - global ps1a - inp_text = my_utils.clean_path(inp_text) - inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) - if (ps1a == []): - opt_dir="%s/%s"%(exp_root,exp_name) - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":opt_dir, - "bert_pretrained_dir":bert_pretrained_dir, - } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - "is_half": str(is_half) - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1a.append(p) - yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1a: - p.wait() - opt = [] - for i_part in range(all_parts): - txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) - with open(txt_path, "r", encoding="utf8") as f: - opt += f.read().strip("\n").split("\n") - os.remove(txt_path) - path_text = "%s/2-name2text.txt" % opt_dir - with open(path_text, "w", encoding="utf8") as f: - f.write("\n".join(opt) + "\n") - ps1a=[] - if len("".join(opt)) > 0: - yield "文本进程成功", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - else: - yield "文本进程失败", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - else: - yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - -def close1a(): - global ps1a - if (ps1a != []): - for p1a in ps1a: - try: - kill_process(p1a.pid) - except: - traceback.print_exc() - ps1a=[] - return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - -ps1b=[] -def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): - global ps1b - inp_text = my_utils.clean_path(inp_text) - inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) - if (ps1b == []): - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":"%s/%s"%(exp_root,exp_name), - "cnhubert_base_dir":ssl_pretrained_dir, - "is_half": str(is_half) - } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1b.append(p) - yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1b: - p.wait() - ps1b=[] - yield "SSL提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - else: - yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - -def close1b(): - global ps1b - if (ps1b != []): - for p1b in ps1b: - try: - kill_process(p1b.pid) - except: - traceback.print_exc() - ps1b=[] - return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - -ps1c=[] -def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): - global ps1c - inp_text = my_utils.clean_path(inp_text) - check_for_exists([inp_text,''], is_dataset_processing=True) - if (ps1c == []): - opt_dir="%s/%s"%(exp_root,exp_name) - config={ - "inp_text":inp_text, - "exp_name":exp_name, - "opt_dir":opt_dir, - "pretrained_s2G":pretrained_s2G_path, - "s2config_path":"GPT_SoVITS/configs/s2.json", - "is_half": str(is_half) - } - gpu_names=gpu_numbers.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1c.append(p) - yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1c: - p.wait() - opt = ["item_name\tsemantic_audio"] - path_semantic = "%s/6-name2semantic.tsv" % opt_dir - for i_part in range(all_parts): - semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) - with open(semantic_path, "r", encoding="utf8") as f: - opt += f.read().strip("\n").split("\n") - os.remove(semantic_path) - with open(path_semantic, "w", encoding="utf8") as f: - f.write("\n".join(opt) + "\n") - ps1c=[] - yield "语义token提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} - else: - yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - -def close1c(): - global ps1c - if (ps1c != []): - for p1c in ps1c: - try: - kill_process(p1c.pid) - except: - traceback.print_exc() - ps1c=[] - return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} -#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G -ps1abc=[] -def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path): - global ps1abc - inp_text = my_utils.clean_path(inp_text) - inp_wav_dir = my_utils.clean_path(inp_wav_dir) - check_for_exists([inp_text,inp_wav_dir]) - if (ps1abc == []): - opt_dir="%s/%s"%(exp_root,exp_name) - try: - #############################1a - path_text="%s/2-name2text.txt" % opt_dir - if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)): - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":opt_dir, - "bert_pretrained_dir":bert_pretrained_dir, - "is_half": str(is_half) - } - gpu_names=gpu_numbers1a.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1abc.append(p) - yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() - - opt = [] - for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) - txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) - with open(txt_path, "r",encoding="utf8") as f: - opt += f.read().strip("\n").split("\n") - os.remove(txt_path) - with open(path_text, "w",encoding="utf8") as f: - f.write("\n".join(opt) + "\n") - assert len("".join(opt)) > 0, "1Aa-文本获取进程失败" - yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - ps1abc=[] - #############################1b - config={ - "inp_text":inp_text, - "inp_wav_dir":inp_wav_dir, - "exp_name":exp_name, - "opt_dir":opt_dir, - "cnhubert_base_dir":ssl_pretrained_dir, - } - gpu_names=gpu_numbers1Ba.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1abc.append(p) - yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() - yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - ps1abc=[] - #############################1c - path_semantic = "%s/6-name2semantic.tsv" % opt_dir - if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)): - config={ - "inp_text":inp_text, - "exp_name":exp_name, - "opt_dir":opt_dir, - "pretrained_s2G":pretrained_s2G_path, - "s2config_path":"GPT_SoVITS/configs/s2.json", - } - gpu_names=gpu_numbers1c.split("-") - all_parts=len(gpu_names) - for i_part in range(all_parts): - config.update( - { - "i_part": str(i_part), - "all_parts": str(all_parts), - "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), - } - ) - os.environ.update(config) - cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec - print(cmd) - p = Popen(cmd, shell=True) - ps1abc.append(p) - yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - for p in ps1abc:p.wait() - - opt = ["item_name\tsemantic_audio"] - for i_part in range(all_parts): - semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) - with open(semantic_path, "r",encoding="utf8") as f: - opt += f.read().strip("\n").split("\n") - os.remove(semantic_path) - with open(path_semantic, "w",encoding="utf8") as f: - f.write("\n".join(opt) + "\n") - yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - ps1abc = [] - yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - except: - traceback.print_exc() - close1abc() - yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - else: - yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} - -def close1abc(): - global ps1abc - if (ps1abc != []): - for p1abc in ps1abc: - try: - kill_process(p1abc.pid) - except: - traceback.print_exc() - ps1abc=[] - return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} - -def switch_version(version_): - os.environ['version']=version_ - global version - version = version_ - if pretrained_sovits_name[-int(version[-1])+2] !='' and pretrained_gpt_name[-int(version[-1])+2] !='':... - else: - gr.Warning(i18n(f'未下载{version.upper()}模型')) - return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]} - -def check_for_exists(file_list=None,is_train=False,is_dataset_processing=False): - missing_files=[] - if is_train == True and file_list: - file_list.append(os.path.join(file_list[0],'2-name2text.txt')) - file_list.append(os.path.join(file_list[0],'3-bert')) - file_list.append(os.path.join(file_list[0],'4-cnhubert')) - file_list.append(os.path.join(file_list[0],'5-wav32k')) - file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv')) - for file in file_list: - if os.path.exists(file):pass - else:missing_files.append(file) - if missing_files: - if is_train: - for missing_file in missing_files: - if missing_file != '': - gr.Warning(missing_file) - gr.Warning(i18n('以下文件或文件夹不存在:')) - else: - for missing_file in missing_files: - if missing_file != '': - gr.Warning(missing_file) - if file_list[-1]==[''] and is_dataset_processing: - pass - else: - gr.Warning(i18n('以下文件或文件夹不存在:')) - -if os.path.exists('GPT_SoVITS/text/G2PWModel'):... -else: - cmd = '"%s" GPT_SoVITS/download.py'%python_exec - p = Popen(cmd, shell=True) - p.wait() - -with gr.Blocks(title="GPT-SoVITS WebUI") as app: - gr.Markdown( - value= - i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") - ) - gr.Markdown( - value= - i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e") - ) - - with gr.Tabs(): - with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 - gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具")) - with gr.Row(): - if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True) - uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息")) - gr.Markdown(value=i18n("0b-语音切分工具")) - with gr.Row(): - with gr.Column(scale=3): - with gr.Row(): - slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="") - slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt") - with gr.Row(): - threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34") - min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000") - min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300") - hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10") - max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500") - with gr.Row(): - _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True) - alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True) - n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True) - with gr.Row(): - slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息")) - open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True) - close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False) - gr.Markdown(value=i18n("0bb-语音降噪工具")) - with gr.Row(): - with gr.Column(scale=3): - with gr.Row(): - denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="") - denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt") - with gr.Row(): - denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息")) - open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True) - close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False) - gr.Markdown(value=i18n("0c-中文批量离线ASR工具")) - with gr.Row(): - with gr.Column(scale=3): - with gr.Row(): - asr_inp_dir = gr.Textbox( - label=i18n("输入文件夹路径"), - value="D:\\GPT-SoVITS\\raw\\xxx", - interactive=True, - ) - asr_opt_dir = gr.Textbox( - label = i18n("输出文件夹路径"), - value = "output/asr_opt", - interactive = True, - ) - with gr.Row(): - asr_model = gr.Dropdown( - label = i18n("ASR 模型"), - choices = list(asr_dict.keys()), - interactive = True, - value="达摩 ASR (中文)" - ) - asr_size = gr.Dropdown( - label = i18n("ASR 模型尺寸"), - choices = ["large"], - interactive = True, - value="large" - ) - asr_lang = gr.Dropdown( - label = i18n("ASR 语言设置"), - choices = ["zh","yue"], - interactive = True, - value="zh" - ) - asr_precision = gr.Dropdown( - label = i18n("数据类型精度"), - choices = ["float32"], - interactive = True, - value="float32" - ) - with gr.Row(): - asr_info = gr.Textbox(label=i18n("ASR进程输出信息")) - open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True) - close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False) - - def change_lang_choices(key): #根据选择的模型修改可选的语言 - # return gr.Dropdown(choices=asr_dict[key]['lang']) - return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]} - def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸 - # return gr.Dropdown(choices=asr_dict[key]['size']) - return {"__type__": "update", "choices": asr_dict[key]['size'],"value":asr_dict[key]['size'][-1]} - def change_precision_choices(key): #根据选择的模型修改可选的语言 - if key =="Faster Whisper (多语种)": - if default_batch_size <= 4: - precision = 'int8' - elif is_half: - precision = 'float16' - else: - precision = 'float32' - else: - precision = 'float32' - # return gr.Dropdown(choices=asr_dict[key]['precision']) - return {"__type__": "update", "choices": asr_dict[key]['precision'],"value":precision} - asr_model.change(change_lang_choices, [asr_model], [asr_lang]) - asr_model.change(change_size_choices, [asr_model], [asr_size]) - asr_model.change(change_precision_choices, [asr_model], [asr_precision]) - - - gr.Markdown(value=i18n("0d-语音文本校对标注工具")) - with gr.Row(): - if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True) - path_list = gr.Textbox( - label=i18n(".list标注文件的路径"), - value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", - interactive=True, - ) - label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) - if_label.change(change_label, [if_label,path_list], [label_info]) - if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) - - with gr.TabItem(i18n("1-GPT-SoVITS-TTS")): - with gr.Row(): - exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True) - gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False) - version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2']) - pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True) - pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True) - pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True) - with gr.TabItem(i18n("1A-训练集格式化工具")): - gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹")) - with gr.Row(): - inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True) - inp_wav_dir = gr.Textbox( - label=i18n("*训练集音频文件目录"), - # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", - interactive=True, - placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。") - ) - gr.Markdown(value=i18n("1Aa-文本内容")) - with gr.Row(): - gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False) - button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True) - button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False) - info1a=gr.Textbox(label=i18n("文本进程输出信息")) - gr.Markdown(value=i18n("1Ab-SSL自监督特征提取")) - with gr.Row(): - gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False) - button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True) - button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False) - info1b=gr.Textbox(label=i18n("SSL进程输出信息")) - gr.Markdown(value=i18n("1Ac-语义token提取")) - with gr.Row(): - gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) - button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True) - button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False) - info1c=gr.Textbox(label=i18n("语义token提取进程输出信息")) - gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连")) - with gr.Row(): - button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True) - button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False) - info1abc=gr.Textbox(label=i18n("一键三连进程输出信息")) - - open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir]) - close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) - open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir]) - close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button]) - open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button,asr_inp_dir,inp_wav_dir]) - close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button]) - - button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close]) - button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close]) - button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close]) - button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close]) - button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close]) - button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close]) - button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close]) - button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close]) - with gr.TabItem(i18n("1B-微调训练")): - gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。")) - with gr.Row(): - batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) - text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True) - save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) - if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) - with gr.Row(): - button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True) - button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False) - info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息")) - gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。")) - with gr.Row(): - batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) - total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) - if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True) - if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) - if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) - save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) - gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) - with gr.Row(): - button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True) - button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False) - info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息")) - button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close]) - button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close]) - button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close]) - button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close]) - with gr.TabItem(i18n("1C-推理")): - gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。")) - with gr.Row(): - GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True) - SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True) - gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True) - refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") - refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown]) - with gr.Row(): - if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True) - tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) - if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) - version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown]) - with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音")) - app.queue(concurrency_count=511, max_size=1022).launch( - server_name="0.0.0.0", - inbrowser=True, - share=True, - server_port=webui_port_main, - quiet=True, +import os,sys +if len(sys.argv)==1:sys.argv.append('v2') +version="v1"if sys.argv[1]=="v1" else"v2" +os.environ["version"]=version +now_dir = os.getcwd() +sys.path.insert(0, now_dir) +import warnings +warnings.filterwarnings("ignore") +import json,yaml,torch,pdb,re,shutil +import platform +import psutil +import signal +torch.manual_seed(233333) +tmp = os.path.join(now_dir, "TEMP") +os.makedirs(tmp, exist_ok=True) +os.environ["TEMP"] = tmp +if(os.path.exists(tmp)): + for name in os.listdir(tmp): + if(name=="jieba.cache"):continue + path="%s/%s"%(tmp,name) + delete=os.remove if os.path.isfile(path) else shutil.rmtree + try: + delete(path) + except Exception as e: + print(str(e)) + pass +import site +site_packages_roots = [] +for path in site.getsitepackages(): + if "packages" in path: + site_packages_roots.append(path) +if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages" % now_dir] +#os.environ["OPENBLAS_NUM_THREADS"] = "4" +os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" +os.environ["all_proxy"] = "" +for site_packages_root in site_packages_roots: + if os.path.exists(site_packages_root): + try: + with open("%s/users.pth" % (site_packages_root), "w") as f: + f.write( + "%s\n%s/tools\n%s/tools/damo_asr\n%s/GPT_SoVITS\n%s/tools/uvr5" + % (now_dir, now_dir, now_dir, now_dir, now_dir) + ) + break + except PermissionError: + pass +from tools import my_utils +import traceback +import shutil +import pdb +from subprocess import Popen +import signal +from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share +from tools.i18n.i18n import I18nAuto, scan_language_list +language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else "Auto" +os.environ["language"]=language +i18n = I18nAuto(language=language) +from scipy.io import wavfile +from tools.my_utils import load_audio +from multiprocessing import cpu_count +# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu +import gradio.analytics as analytics +analytics.version_check = lambda:None +import gradio as gr +n_cpu=cpu_count() + +ngpu = torch.cuda.device_count() +gpu_infos = [] +mem = [] +if_gpu_ok = False + +# 判断是否有能用来训练和加速推理的N卡 +ok_gpu_keywords={"10","16","20","30","40","A2","A3","A4","P4","A50","500","A60","70","80","90","M4","T4","TITAN","L4","4060","H"} +set_gpu_numbers=set() +if torch.cuda.is_available() or ngpu != 0: + for i in range(ngpu): + gpu_name = torch.cuda.get_device_name(i) + if any(value in gpu_name.upper()for value in ok_gpu_keywords): + # A10#A100#V100#A40#P40#M40#K80#A4500 + if_gpu_ok = True # 至少有一张能用的N卡 + gpu_infos.append("%s\t%s" % (i, gpu_name)) + set_gpu_numbers.add(i) + mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4)) +# # 判断是否支持mps加速 +# if torch.backends.mps.is_available(): +# if_gpu_ok = True +# gpu_infos.append("%s\t%s" % ("0", "Apple GPU")) +# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存 + +if if_gpu_ok and len(gpu_infos) > 0: + gpu_info = "\n".join(gpu_infos) + default_batch_size = min(mem) // 2 +else: + gpu_info = ("%s\t%s" % ("0", "CPU")) + gpu_infos.append("%s\t%s" % ("0", "CPU")) + set_gpu_numbers.add(0) + default_batch_size = int(psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2) +gpus = "-".join([i[0] for i in gpu_infos]) +default_gpu_numbers=str(sorted(list(set_gpu_numbers))[0]) +def fix_gpu_number(input):#将越界的number强制改到界内 + try: + if(int(input)not in set_gpu_numbers):return default_gpu_numbers + except:return input + return input +def fix_gpu_numbers(inputs): + output=[] + try: + for input in inputs.split(","):output.append(str(fix_gpu_number(input))) + return ",".join(output) + except: + return inputs + +pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"] +pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"] + +pretrained_model_list = (pretrained_sovits_name[-int(version[-1])+2],pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"),pretrained_gpt_name[-int(version[-1])+2],"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large","GPT_SoVITS/pretrained_models/chinese-hubert-base") + +_='' +for i in pretrained_model_list: + if os.path.exists(i):... + else:_+=f'\n {i}' +if _: + print("warning:",i18n('以下模型不存在:')+_) + +_ =[[],[]] +for i in range(2): + if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i]) + else:_[0].append("")##没有下pretrained模型的,说不定他们是想自己从零训底模呢 + if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i]) + else:_[-1].append("") +pretrained_gpt_name,pretrained_sovits_name = _ + +SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"] +GPT_weight_root=["GPT_weights_v2","GPT_weights"] +for root in SoVITS_weight_root+GPT_weight_root: + os.makedirs(root,exist_ok=True) +def get_weights_names(): + SoVITS_names = [name for name in pretrained_sovits_name if name!=""] + for path in SoVITS_weight_root: + for name in os.listdir(path): + if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name)) + GPT_names = [name for name in pretrained_gpt_name if name!=""] + for path in GPT_weight_root: + for name in os.listdir(path): + if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name)) + return SoVITS_names, GPT_names + +SoVITS_names,GPT_names = get_weights_names() +for path in SoVITS_weight_root+GPT_weight_root: + os.makedirs(path,exist_ok=True) + + +def custom_sort_key(s): + # 使用正则表达式提取字符串中的数字部分和非数字部分 + parts = re.split('(\d+)', s) + # 将数字部分转换为整数,非数字部分保持不变 + parts = [int(part) if part.isdigit() else part for part in parts] + return parts + +def change_choices(): + SoVITS_names, GPT_names = get_weights_names() + return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"} + +p_label=None +p_uvr5=None +p_asr=None +p_denoise=None +p_tts_inference=None + +def kill_proc_tree(pid, including_parent=True): + try: + parent = psutil.Process(pid) + except psutil.NoSuchProcess: + # Process already terminated + return + + children = parent.children(recursive=True) + for child in children: + try: + os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL + except OSError: + pass + if including_parent: + try: + os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL + except OSError: + pass + +system=platform.system() +def kill_process(pid): + if(system=="Windows"): + cmd = "taskkill /t /f /pid %s" % pid + os.system(cmd) + else: + kill_proc_tree(pid) + + +def change_label(if_label,path_list): + global p_label + if(if_label==True and p_label==None): + path_list=my_utils.clean_path(path_list) + cmd = '"%s" tools/subfix_webui.py --load_list "%s" --webui_port %s --is_share %s'%(python_exec,path_list,webui_port_subfix,is_share) + yield i18n("打标工具WebUI已开启") + print(cmd) + p_label = Popen(cmd, shell=True) + elif(if_label==False and p_label!=None): + kill_process(p_label.pid) + p_label=None + yield i18n("打标工具WebUI已关闭") + +def change_uvr5(if_uvr5): + global p_uvr5 + if(if_uvr5==True and p_uvr5==None): + cmd = '"%s" tools/uvr5/webui.py "%s" %s %s %s'%(python_exec,infer_device,is_half,webui_port_uvr5,is_share) + yield i18n("UVR5已开启") + print(cmd) + p_uvr5 = Popen(cmd, shell=True) + elif(if_uvr5==False and p_uvr5!=None): + kill_process(p_uvr5.pid) + p_uvr5=None + yield i18n("UVR5已关闭") + +def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path,sovits_path): + global p_tts_inference + if(if_tts==True and p_tts_inference==None): + os.environ["gpt_path"]=gpt_path if "/" in gpt_path else "%s/%s"%(GPT_weight_root,gpt_path) + os.environ["sovits_path"]=sovits_path if "/"in sovits_path else "%s/%s"%(SoVITS_weight_root,sovits_path) + os.environ["cnhubert_base_path"]=cnhubert_base_path + os.environ["bert_path"]=bert_path + os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_number(gpu_number) + os.environ["is_half"]=str(is_half) + os.environ["infer_ttswebui"]=str(webui_port_infer_tts) + os.environ["is_share"]=str(is_share) + cmd = '"%s" GPT_SoVITS/inference_webui.py "%s"'%(python_exec, language) + yield i18n("TTS推理进程已开启") + print(cmd) + p_tts_inference = Popen(cmd, shell=True) + elif(if_tts==False and p_tts_inference!=None): + kill_process(p_tts_inference.pid) + p_tts_inference=None + yield i18n("TTS推理进程已关闭") + +from tools.asr.config import asr_dict +def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_precision): + global p_asr + if(p_asr==None): + asr_inp_dir=my_utils.clean_path(asr_inp_dir) + asr_opt_dir=my_utils.clean_path(asr_opt_dir) + check_for_exists([asr_inp_dir]) + cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}' + cmd += f' -i "{asr_inp_dir}"' + cmd += f' -o "{asr_opt_dir}"' + cmd += f' -s {asr_model_size}' + cmd += f' -l {asr_lang}' + cmd += f" -p {asr_precision}" + output_file_name = os.path.basename(asr_inp_dir) + output_folder = asr_opt_dir or "output/asr_opt" + output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') + yield "ASR任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"} + print(cmd) + p_asr = Popen(cmd, shell=True) + p_asr.wait() + p_asr=None + yield f"ASR任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":output_file_path}, {"__type__":"update","value":asr_inp_dir} + else: + yield "已有正在进行的ASR任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"}, {"__type__":"update"} + # return None + +def close_asr(): + global p_asr + if(p_asr!=None): + kill_process(p_asr.pid) + p_asr=None + return "已终止ASR进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} +def open_denoise(denoise_inp_dir, denoise_opt_dir): + global p_denoise + if(p_denoise==None): + denoise_inp_dir=my_utils.clean_path(denoise_inp_dir) + denoise_opt_dir=my_utils.clean_path(denoise_opt_dir) + check_for_exists([denoise_inp_dir]) + cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32") + + yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} + print(cmd) + p_denoise = Popen(cmd, shell=True) + p_denoise.wait() + p_denoise=None + yield f"语音降噪任务完成, 查看终端进行下一步", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__":"update","value":denoise_opt_dir}, {"__type__":"update","value":denoise_opt_dir} + else: + yield "已有正在进行的语音降噪任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} + # return None + +def close_denoise(): + global p_denoise + if(p_denoise!=None): + kill_process(p_denoise.pid) + p_denoise=None + return "已终止语音降噪进程", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + +p_train_SoVITS=None +def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D): + global p_train_SoVITS + if(p_train_SoVITS==None): + with open("GPT_SoVITS/configs/s2.json")as f: + data=f.read() + data=json.loads(data) + s2_dir="%s/%s"%(exp_root,exp_name) + os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) + check_for_exists([s2_dir],is_train=True) + if(is_half==False): + data["train"]["fp16_run"]=False + batch_size=max(1,batch_size//2) + data["train"]["batch_size"]=batch_size + data["train"]["epochs"]=total_epoch + data["train"]["text_low_lr_rate"]=text_low_lr_rate + data["train"]["pretrained_s2G"]=pretrained_s2G + data["train"]["pretrained_s2D"]=pretrained_s2D + data["train"]["if_save_latest"]=if_save_latest + data["train"]["if_save_every_weights"]=if_save_every_weights + data["train"]["save_every_epoch"]=save_every_epoch + data["train"]["gpu_numbers"]=gpu_numbers1Ba + data["model"]["version"]=version + data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir + data["save_weight_dir"]=SoVITS_weight_root[-int(version[-1])+2] + data["name"]=exp_name + data["version"]=version + tmp_config_path="%s/tmp_s2.json"%tmp + with open(tmp_config_path,"w")as f:f.write(json.dumps(data)) + + cmd = '"%s" GPT_SoVITS/s2_train.py --config "%s"'%(python_exec,tmp_config_path) + yield "SoVITS训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True} + print(cmd) + p_train_SoVITS = Popen(cmd, shell=True) + p_train_SoVITS.wait() + p_train_SoVITS=None + yield "SoVITS训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + else: + yield "已有正在进行的SoVITS训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True} + +def close1Ba(): + global p_train_SoVITS + if(p_train_SoVITS!=None): + kill_process(p_train_SoVITS.pid) + p_train_SoVITS=None + return "已终止SoVITS训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + +p_train_GPT=None +def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers,pretrained_s1): + global p_train_GPT + if(p_train_GPT==None): + with open("GPT_SoVITS/configs/s1longer.yaml"if version=="v1"else "GPT_SoVITS/configs/s1longer-v2.yaml")as f: + data=f.read() + data=yaml.load(data, Loader=yaml.FullLoader) + s1_dir="%s/%s"%(exp_root,exp_name) + os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) + check_for_exists([s1_dir],is_train=True) + if(is_half==False): + data["train"]["precision"]="32" + batch_size = max(1, batch_size // 2) + data["train"]["batch_size"]=batch_size + data["train"]["epochs"]=total_epoch + data["pretrained_s1"]=pretrained_s1 + data["train"]["save_every_n_epoch"]=save_every_epoch + data["train"]["if_save_every_weights"]=if_save_every_weights + data["train"]["if_save_latest"]=if_save_latest + data["train"]["if_dpo"]=if_dpo + data["train"]["half_weights_save_dir"]=GPT_weight_root[-int(version[-1])+2] + data["train"]["exp_name"]=exp_name + data["train_semantic_path"]="%s/6-name2semantic.tsv"%s1_dir + data["train_phoneme_path"]="%s/2-name2text.txt"%s1_dir + data["output_dir"]="%s/logs_s1"%s1_dir + # data["version"]=version + + os.environ["_CUDA_VISIBLE_DEVICES"]=fix_gpu_numbers(gpu_numbers.replace("-",",")) + os.environ["hz"]="25hz" + tmp_config_path="%s/tmp_s1.yaml"%tmp + with open(tmp_config_path, "w") as f:f.write(yaml.dump(data, default_flow_style=False)) + # cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" --train_semantic_path "%s/6-name2semantic.tsv" --train_phoneme_path "%s/2-name2text.txt" --output_dir "%s/logs_s1"'%(python_exec,tmp_config_path,s1_dir,s1_dir,s1_dir) + cmd = '"%s" GPT_SoVITS/s1_train.py --config_file "%s" '%(python_exec,tmp_config_path) + yield "GPT训练开始:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True} + print(cmd) + p_train_GPT = Popen(cmd, shell=True) + p_train_GPT.wait() + p_train_GPT=None + yield "GPT训练完成", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + else: + yield "已有正在进行的GPT训练任务,需先终止才能开启下一次任务", {"__type__":"update","visible":False}, {"__type__":"update","visible":True} + +def close1Bb(): + global p_train_GPT + if(p_train_GPT!=None): + kill_process(p_train_GPT.pid) + p_train_GPT=None + return "已终止GPT训练", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + +ps_slice=[] +def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_parts): + global ps_slice + inp = my_utils.clean_path(inp) + opt_root = my_utils.clean_path(opt_root) + check_for_exists([inp]) + if(os.path.exists(inp)==False): + yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + return + if os.path.isfile(inp):n_parts=1 + elif os.path.isdir(inp):pass + else: + yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + return + if (ps_slice == []): + for i_part in range(n_parts): + cmd = '"%s" tools/slice_audio.py "%s" "%s" %s %s %s %s %s %s %s %s %s''' % (python_exec,inp, opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, i_part, n_parts) + print(cmd) + p = Popen(cmd, shell=True) + ps_slice.append(p) + yield "切割执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + for p in ps_slice: + p.wait() + ps_slice=[] + yield "切割结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root}, {"__type__": "update", "value":opt_root} + else: + yield "已有正在进行的切割任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} + +def close_slice(): + global ps_slice + if (ps_slice != []): + for p_slice in ps_slice: + try: + kill_process(p_slice.pid) + except: + traceback.print_exc() + ps_slice=[] + return "已终止所有切割进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + +ps1a=[] +def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): + global ps1a + inp_text = my_utils.clean_path(inp_text) + inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) + if (ps1a == []): + opt_dir="%s/%s"%(exp_root,exp_name) + config={ + "inp_text":inp_text, + "inp_wav_dir":inp_wav_dir, + "exp_name":exp_name, + "opt_dir":opt_dir, + "bert_pretrained_dir":bert_pretrained_dir, + } + gpu_names=gpu_numbers.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + "is_half": str(is_half) + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1a.append(p) + yield "文本进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1a: + p.wait() + opt = [] + for i_part in range(all_parts): + txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) + with open(txt_path, "r", encoding="utf8") as f: + opt += f.read().strip("\n").split("\n") + os.remove(txt_path) + path_text = "%s/2-name2text.txt" % opt_dir + with open(path_text, "w", encoding="utf8") as f: + f.write("\n".join(opt) + "\n") + ps1a=[] + if len("".join(opt)) > 0: + yield "文本进程成功", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + else: + yield "文本进程失败", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + else: + yield "已有正在进行的文本任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + +def close1a(): + global ps1a + if (ps1a != []): + for p1a in ps1a: + try: + kill_process(p1a.pid) + except: + traceback.print_exc() + ps1a=[] + return "已终止所有1a进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + +ps1b=[] +def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): + global ps1b + inp_text = my_utils.clean_path(inp_text) + inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir], is_dataset_processing=True) + if (ps1b == []): + config={ + "inp_text":inp_text, + "inp_wav_dir":inp_wav_dir, + "exp_name":exp_name, + "opt_dir":"%s/%s"%(exp_root,exp_name), + "cnhubert_base_dir":ssl_pretrained_dir, + "is_half": str(is_half) + } + gpu_names=gpu_numbers.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1b.append(p) + yield "SSL提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1b: + p.wait() + ps1b=[] + yield "SSL提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + else: + yield "已有正在进行的SSL提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + +def close1b(): + global ps1b + if (ps1b != []): + for p1b in ps1b: + try: + kill_process(p1b.pid) + except: + traceback.print_exc() + ps1b=[] + return "已终止所有1b进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + +ps1c=[] +def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): + global ps1c + inp_text = my_utils.clean_path(inp_text) + check_for_exists([inp_text,''], is_dataset_processing=True) + if (ps1c == []): + opt_dir="%s/%s"%(exp_root,exp_name) + config={ + "inp_text":inp_text, + "exp_name":exp_name, + "opt_dir":opt_dir, + "pretrained_s2G":pretrained_s2G_path, + "s2config_path":"GPT_SoVITS/configs/s2.json", + "is_half": str(is_half) + } + gpu_names=gpu_numbers.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1c.append(p) + yield "语义token提取进程执行中", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1c: + p.wait() + opt = ["item_name\tsemantic_audio"] + path_semantic = "%s/6-name2semantic.tsv" % opt_dir + for i_part in range(all_parts): + semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) + with open(semantic_path, "r", encoding="utf8") as f: + opt += f.read().strip("\n").split("\n") + os.remove(semantic_path) + with open(path_semantic, "w", encoding="utf8") as f: + f.write("\n".join(opt) + "\n") + ps1c=[] + yield "语义token提取进程结束", {"__type__":"update","visible":True}, {"__type__":"update","visible":False} + else: + yield "已有正在进行的语义token提取任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + +def close1c(): + global ps1c + if (ps1c != []): + for p1c in ps1c: + try: + kill_process(p1c.pid) + except: + traceback.print_exc() + ps1c=[] + return "已终止所有语义token进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} +#####inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G +ps1abc=[] +def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,ssl_pretrained_dir,pretrained_s2G_path): + global ps1abc + inp_text = my_utils.clean_path(inp_text) + inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir]) + if (ps1abc == []): + opt_dir="%s/%s"%(exp_root,exp_name) + try: + #############################1a + path_text="%s/2-name2text.txt" % opt_dir + if(os.path.exists(path_text)==False or (os.path.exists(path_text)==True and len(open(path_text,"r",encoding="utf8").read().strip("\n").split("\n"))<2)): + config={ + "inp_text":inp_text, + "inp_wav_dir":inp_wav_dir, + "exp_name":exp_name, + "opt_dir":opt_dir, + "bert_pretrained_dir":bert_pretrained_dir, + "is_half": str(is_half) + } + gpu_names=gpu_numbers1a.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/1-get-text.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1abc.append(p) + yield "进度:1a-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1abc:p.wait() + + opt = [] + for i_part in range(all_parts):#txt_path="%s/2-name2text-%s.txt"%(opt_dir,i_part) + txt_path = "%s/2-name2text-%s.txt" % (opt_dir, i_part) + with open(txt_path, "r",encoding="utf8") as f: + opt += f.read().strip("\n").split("\n") + os.remove(txt_path) + with open(path_text, "w",encoding="utf8") as f: + f.write("\n".join(opt) + "\n") + assert len("".join(opt)) > 0, "1Aa-文本获取进程失败" + yield "进度:1a-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + ps1abc=[] + #############################1b + config={ + "inp_text":inp_text, + "inp_wav_dir":inp_wav_dir, + "exp_name":exp_name, + "opt_dir":opt_dir, + "cnhubert_base_dir":ssl_pretrained_dir, + } + gpu_names=gpu_numbers1Ba.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1abc.append(p) + yield "进度:1a-done, 1b-ing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1abc:p.wait() + yield "进度:1a1b-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + ps1abc=[] + #############################1c + path_semantic = "%s/6-name2semantic.tsv" % opt_dir + if(os.path.exists(path_semantic)==False or (os.path.exists(path_semantic)==True and os.path.getsize(path_semantic)<31)): + config={ + "inp_text":inp_text, + "exp_name":exp_name, + "opt_dir":opt_dir, + "pretrained_s2G":pretrained_s2G_path, + "s2config_path":"GPT_SoVITS/configs/s2.json", + } + gpu_names=gpu_numbers1c.split("-") + all_parts=len(gpu_names) + for i_part in range(all_parts): + config.update( + { + "i_part": str(i_part), + "all_parts": str(all_parts), + "_CUDA_VISIBLE_DEVICES": fix_gpu_number(gpu_names[i_part]), + } + ) + os.environ.update(config) + cmd = '"%s" GPT_SoVITS/prepare_datasets/3-get-semantic.py'%python_exec + print(cmd) + p = Popen(cmd, shell=True) + ps1abc.append(p) + yield "进度:1a1b-done, 1cing", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + for p in ps1abc:p.wait() + + opt = ["item_name\tsemantic_audio"] + for i_part in range(all_parts): + semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) + with open(semantic_path, "r",encoding="utf8") as f: + opt += f.read().strip("\n").split("\n") + os.remove(semantic_path) + with open(path_semantic, "w",encoding="utf8") as f: + f.write("\n".join(opt) + "\n") + yield "进度:all-done", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + ps1abc = [] + yield "一键三连进程结束", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + except: + traceback.print_exc() + close1abc() + yield "一键三连中途报错", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + else: + yield "已有正在进行的一键三连任务,需先终止才能开启下一次任务", {"__type__": "update", "visible": False}, {"__type__": "update", "visible": True} + +def close1abc(): + global ps1abc + if (ps1abc != []): + for p1abc in ps1abc: + try: + kill_process(p1abc.pid) + except: + traceback.print_exc() + ps1abc=[] + return "已终止所有一键三连进程", {"__type__": "update", "visible": True}, {"__type__": "update", "visible": False} + +def switch_version(version_): + os.environ['version']=version_ + global version + version = version_ + if pretrained_sovits_name[-int(version[-1])+2] !='' and pretrained_gpt_name[-int(version[-1])+2] !='':... + else: + gr.Warning(i18n(f'未下载{version.upper()}模型')) + return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]} + +def check_for_exists(file_list=None,is_train=False,is_dataset_processing=False): + missing_files=[] + if is_train == True and file_list: + file_list.append(os.path.join(file_list[0],'2-name2text.txt')) + file_list.append(os.path.join(file_list[0],'3-bert')) + file_list.append(os.path.join(file_list[0],'4-cnhubert')) + file_list.append(os.path.join(file_list[0],'5-wav32k')) + file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv')) + for file in file_list: + if os.path.exists(file):pass + else:missing_files.append(file) + if missing_files: + if is_train: + for missing_file in missing_files: + if missing_file != '': + gr.Warning(missing_file) + gr.Warning(i18n('以下文件或文件夹不存在:')) + else: + for missing_file in missing_files: + if missing_file != '': + gr.Warning(missing_file) + if file_list[-1]==[''] and is_dataset_processing: + pass + else: + gr.Warning(i18n('以下文件或文件夹不存在:')) + +if os.path.exists('GPT_SoVITS/text/G2PWModel'):... +else: + cmd = '"%s" GPT_SoVITS/download.py'%python_exec + p = Popen(cmd, shell=True) + p.wait() + +with gr.Blocks(title="GPT-SoVITS WebUI") as app: + gr.Markdown( + value= + i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") + ) + gr.Markdown( + value= + i18n("中文教程文档:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e") + ) + + with gr.Tabs(): + with gr.TabItem(i18n("0-前置数据集获取工具")):#提前随机切片防止uvr5爆内存->uvr5->slicer->asr->打标 + gr.Markdown(value=i18n("0a-UVR5人声伴奏分离&去混响去延迟工具")) + with gr.Row(): + if_uvr5 = gr.Checkbox(label=i18n("是否开启UVR5-WebUI"),show_label=True) + uvr5_info = gr.Textbox(label=i18n("UVR5进程输出信息")) + gr.Markdown(value=i18n("0b-语音切分工具")) + with gr.Row(): + with gr.Column(scale=3): + with gr.Row(): + slice_inp_path=gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"),value="") + slice_opt_root=gr.Textbox(label=i18n("切分后的子音频的输出根目录"),value="output/slicer_opt") + with gr.Row(): + threshold=gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"),value="-34") + min_length=gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"),value="4000") + min_interval=gr.Textbox(label=i18n("min_interval:最短切割间隔"),value="300") + hop_size=gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"),value="10") + max_sil_kept=gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"),value="500") + with gr.Row(): + _max=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("max:归一化后最大值多少"),value=0.9,interactive=True) + alpha=gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("alpha_mix:混多少比例归一化后音频进来"),value=0.25,interactive=True) + n_process=gr.Slider(minimum=1,maximum=n_cpu,step=1,label=i18n("切割使用的进程数"),value=4,interactive=True) + with gr.Row(): + slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息")) + open_slicer_button=gr.Button(i18n("开启语音切割"), variant="primary",visible=True) + close_slicer_button=gr.Button(i18n("终止语音切割"), variant="primary",visible=False) + gr.Markdown(value=i18n("0bb-语音降噪工具")) + with gr.Row(): + with gr.Column(scale=3): + with gr.Row(): + denoise_input_dir=gr.Textbox(label=i18n("降噪音频文件输入文件夹"),value="") + denoise_output_dir=gr.Textbox(label=i18n("降噪结果输出文件夹"),value="output/denoise_opt") + with gr.Row(): + denoise_info = gr.Textbox(label=i18n("语音降噪进程输出信息")) + open_denoise_button = gr.Button(i18n("开启语音降噪"), variant="primary",visible=True) + close_denoise_button = gr.Button(i18n("终止语音降噪进程"), variant="primary",visible=False) + gr.Markdown(value=i18n("0c-中文批量离线ASR工具")) + with gr.Row(): + with gr.Column(scale=3): + with gr.Row(): + asr_inp_dir = gr.Textbox( + label=i18n("输入文件夹路径"), + value="D:\\GPT-SoVITS\\raw\\xxx", + interactive=True, + ) + asr_opt_dir = gr.Textbox( + label = i18n("输出文件夹路径"), + value = "output/asr_opt", + interactive = True, + ) + with gr.Row(): + asr_model = gr.Dropdown( + label = i18n("ASR 模型"), + choices = list(asr_dict.keys()), + interactive = True, + value="达摩 ASR (中文)" + ) + asr_size = gr.Dropdown( + label = i18n("ASR 模型尺寸"), + choices = ["large"], + interactive = True, + value="large" + ) + asr_lang = gr.Dropdown( + label = i18n("ASR 语言设置"), + choices = ["zh","yue"], + interactive = True, + value="zh" + ) + asr_precision = gr.Dropdown( + label = i18n("数据类型精度"), + choices = ["float32"], + interactive = True, + value="float32" + ) + with gr.Row(): + asr_info = gr.Textbox(label=i18n("ASR进程输出信息")) + open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True) + close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False) + + def change_lang_choices(key): #根据选择的模型修改可选的语言 + # return gr.Dropdown(choices=asr_dict[key]['lang']) + return {"__type__": "update", "choices": asr_dict[key]['lang'],"value":asr_dict[key]['lang'][0]} + def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸 + # return gr.Dropdown(choices=asr_dict[key]['size']) + return {"__type__": "update", "choices": asr_dict[key]['size'],"value":asr_dict[key]['size'][-1]} + def change_precision_choices(key): #根据选择的模型修改可选的语言 + if key =="Faster Whisper (多语种)": + if default_batch_size <= 4: + precision = 'int8' + elif is_half: + precision = 'float16' + else: + precision = 'float32' + else: + precision = 'float32' + # return gr.Dropdown(choices=asr_dict[key]['precision']) + return {"__type__": "update", "choices": asr_dict[key]['precision'],"value":precision} + asr_model.change(change_lang_choices, [asr_model], [asr_lang]) + asr_model.change(change_size_choices, [asr_model], [asr_size]) + asr_model.change(change_precision_choices, [asr_model], [asr_precision]) + + + gr.Markdown(value=i18n("0d-语音文本校对标注工具")) + with gr.Row(): + if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True) + path_list = gr.Textbox( + label=i18n(".list标注文件的路径"), + value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list", + interactive=True, + ) + label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) + if_label.change(change_label, [if_label,path_list], [label_info]) + if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) + + with gr.TabItem(i18n("1-GPT-SoVITS-TTS")): + with gr.Row(): + exp_name = gr.Textbox(label=i18n("*实验/模型名"), value="xxx", interactive=True) + gpu_info = gr.Textbox(label=i18n("显卡信息"), value=gpu_info, visible=True, interactive=False) + version_checkbox = gr.Radio(label=i18n("版本"),value=version,choices=['v1','v2']) + pretrained_s2G = gr.Textbox(label=i18n("预训练的SoVITS-G模型路径"), value=pretrained_sovits_name[-int(version[-1])+2], interactive=True) + pretrained_s2D = gr.Textbox(label=i18n("预训练的SoVITS-D模型路径"), value=pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D"), interactive=True) + pretrained_s1 = gr.Textbox(label=i18n("预训练的GPT模型路径"), value=pretrained_gpt_name[-int(version[-1])+2], interactive=True) + with gr.TabItem(i18n("1A-训练集格式化工具")): + gr.Markdown(value=i18n("输出logs/实验名目录下应有23456开头的文件和文件夹")) + with gr.Row(): + inp_text = gr.Textbox(label=i18n("*文本标注文件"),value=r"D:\RVC1006\GPT-SoVITS\raw\xxx.list",interactive=True) + inp_wav_dir = gr.Textbox( + label=i18n("*训练集音频文件目录"), + # value=r"D:\RVC1006\GPT-SoVITS\raw\xxx", + interactive=True, + placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。如果留空则使用.list文件里的绝对全路径。") + ) + gr.Markdown(value=i18n("1Aa-文本内容")) + with gr.Row(): + gpu_numbers1a = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + bert_pretrained_dir = gr.Textbox(label=i18n("预训练的中文BERT模型路径"),value="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",interactive=False) + button1a_open = gr.Button(i18n("开启文本获取"), variant="primary",visible=True) + button1a_close = gr.Button(i18n("终止文本获取进程"), variant="primary",visible=False) + info1a=gr.Textbox(label=i18n("文本进程输出信息")) + gr.Markdown(value=i18n("1Ab-SSL自监督特征提取")) + with gr.Row(): + gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + cnhubert_base_dir = gr.Textbox(label=i18n("预训练的SSL模型路径"),value="GPT_SoVITS/pretrained_models/chinese-hubert-base",interactive=False) + button1b_open = gr.Button(i18n("开启SSL提取"), variant="primary",visible=True) + button1b_close = gr.Button(i18n("终止SSL提取进程"), variant="primary",visible=False) + info1b=gr.Textbox(label=i18n("SSL进程输出信息")) + gr.Markdown(value=i18n("1Ac-语义token提取")) + with gr.Row(): + gpu_numbers1c = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"),value="%s-%s"%(gpus,gpus),interactive=True) + button1c_open = gr.Button(i18n("开启语义token提取"), variant="primary",visible=True) + button1c_close = gr.Button(i18n("终止语义token提取进程"), variant="primary",visible=False) + info1c=gr.Textbox(label=i18n("语义token提取进程输出信息")) + gr.Markdown(value=i18n("1Aabc-训练集格式化一键三连")) + with gr.Row(): + button1abc_open = gr.Button(i18n("开启一键三连"), variant="primary",visible=True) + button1abc_close = gr.Button(i18n("终止一键三连"), variant="primary",visible=False) + info1abc=gr.Textbox(label=i18n("一键三连进程输出信息")) + + open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang, asr_precision], [asr_info,open_asr_button,close_asr_button,path_list,inp_text,inp_wav_dir]) + close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) + open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button,asr_inp_dir,denoise_input_dir,inp_wav_dir]) + close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button]) + open_denoise_button.click(open_denoise, [denoise_input_dir,denoise_output_dir], [denoise_info,open_denoise_button,close_denoise_button,asr_inp_dir,inp_wav_dir]) + close_denoise_button.click(close_denoise, [], [denoise_info,open_denoise_button,close_denoise_button]) + + button1a_open.click(open1a, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,bert_pretrained_dir], [info1a,button1a_open,button1a_close]) + button1a_close.click(close1a, [], [info1a,button1a_open,button1a_close]) + button1b_open.click(open1b, [inp_text,inp_wav_dir,exp_name,gpu_numbers1Ba,cnhubert_base_dir], [info1b,button1b_open,button1b_close]) + button1b_close.click(close1b, [], [info1b,button1b_open,button1b_close]) + button1c_open.click(open1c, [inp_text,exp_name,gpu_numbers1c,pretrained_s2G], [info1c,button1c_open,button1c_close]) + button1c_close.click(close1c, [], [info1c,button1c_open,button1c_close]) + button1abc_open.click(open1abc, [inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numbers1c,bert_pretrained_dir,cnhubert_base_dir,pretrained_s2G], [info1abc,button1abc_open,button1abc_close]) + button1abc_close.click(close1abc, [], [info1abc,button1abc_open,button1abc_close]) + with gr.TabItem(i18n("1B-微调训练")): + gr.Markdown(value=i18n("1Ba-SoVITS训练。用于分享的模型文件输出在SoVITS_weights下。")) + with gr.Row(): + batch_size = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) + total_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("总训练轮数total_epoch,不建议太高"),value=8,interactive=True) + text_low_lr_rate = gr.Slider(minimum=0.2,maximum=0.6,step=0.05,label=i18n("文本模块学习率权重"),value=0.4,interactive=True) + save_every_epoch = gr.Slider(minimum=1,maximum=25,step=1,label=i18n("保存频率save_every_epoch"),value=4,interactive=True) + if_save_latest = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) + if_save_every_weights = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) + gpu_numbers1Ba = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) + with gr.Row(): + button1Ba_open = gr.Button(i18n("开启SoVITS训练"), variant="primary",visible=True) + button1Ba_close = gr.Button(i18n("终止SoVITS训练"), variant="primary",visible=False) + info1Ba=gr.Textbox(label=i18n("SoVITS训练进程输出信息")) + gr.Markdown(value=i18n("1Bb-GPT训练。用于分享的模型文件输出在GPT_weights下。")) + with gr.Row(): + batch_size1Bb = gr.Slider(minimum=1,maximum=40,step=1,label=i18n("每张显卡的batch_size"),value=default_batch_size,interactive=True) + total_epoch1Bb = gr.Slider(minimum=2,maximum=50,step=1,label=i18n("总训练轮数total_epoch"),value=15,interactive=True) + if_dpo = gr.Checkbox(label=i18n("是否开启dpo训练选项(实验性)"), value=False, interactive=True, show_label=True) + if_save_latest1Bb = gr.Checkbox(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), value=True, interactive=True, show_label=True) + if_save_every_weights1Bb = gr.Checkbox(label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), value=True, interactive=True, show_label=True) + save_every_epoch1Bb = gr.Slider(minimum=1,maximum=50,step=1,label=i18n("保存频率save_every_epoch"),value=5,interactive=True) + gpu_numbers1Bb = gr.Textbox(label=i18n("GPU卡号以-分割,每个卡号一个进程"), value="%s" % (gpus), interactive=True) + with gr.Row(): + button1Bb_open = gr.Button(i18n("开启GPT训练"), variant="primary",visible=True) + button1Bb_close = gr.Button(i18n("终止GPT训练"), variant="primary",visible=False) + info1Bb=gr.Textbox(label=i18n("GPT训练进程输出信息")) + button1Ba_open.click(open1Ba, [batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_save_every_weights,save_every_epoch,gpu_numbers1Ba,pretrained_s2G,pretrained_s2D], [info1Ba,button1Ba_open,button1Ba_close]) + button1Ba_close.click(close1Ba, [], [info1Ba,button1Ba_open,button1Ba_close]) + button1Bb_open.click(open1Bb, [batch_size1Bb,total_epoch1Bb,exp_name,if_dpo,if_save_latest1Bb,if_save_every_weights1Bb,save_every_epoch1Bb,gpu_numbers1Bb,pretrained_s1], [info1Bb,button1Bb_open,button1Bb_close]) + button1Bb_close.click(close1Bb, [], [info1Bb,button1Bb_open,button1Bb_close]) + with gr.TabItem(i18n("1C-推理")): + gr.Markdown(value=i18n("选择训练完存放在SoVITS_weights和GPT_weights下的模型。默认的一个是底模,体验5秒Zero Shot TTS用。")) + with gr.Row(): + GPT_dropdown = gr.Dropdown(label=i18n("*GPT模型列表"), choices=sorted(GPT_names,key=custom_sort_key),value=pretrained_gpt_name[0],interactive=True) + SoVITS_dropdown = gr.Dropdown(label=i18n("*SoVITS模型列表"), choices=sorted(SoVITS_names,key=custom_sort_key),value=pretrained_sovits_name[0],interactive=True) + gpu_number_1C=gr.Textbox(label=i18n("GPU卡号,只能填1个整数"), value=gpus, interactive=True) + refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") + refresh_button.click(fn=change_choices,inputs=[],outputs=[SoVITS_dropdown,GPT_dropdown]) + with gr.Row(): + if_tts = gr.Checkbox(label=i18n("是否开启TTS推理WebUI"), show_label=True) + tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) + if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) + version_checkbox.change(switch_version,[version_checkbox],[pretrained_s2G,pretrained_s2D,pretrained_s1,GPT_dropdown,SoVITS_dropdown]) + with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音")) + app.queue(concurrency_count=511, max_size=1022).launch( + share=False, + show_error=True, ) \ No newline at end of file