File size: 4,463 Bytes
d77a802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import torch
from multiprocessing import cpu_count


class Config:
    def __init__(self):
        self.device = "cuda:0"
        self.is_half = True
        self.n_cpu = 0
        self.gpu_name = None
        self.gpu_mem = None
        (
            self.python_cmd,
            self.listen_port,
            self.iscolab,
            self.noparallel,
            self.noautoopen,
            self.api,
            self.share,
            self.files
        ) = self.arg_parse()
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    @staticmethod
    def arg_parse() -> tuple:
        parser = argparse.ArgumentParser()
        parser.add_argument("--port", type=int, default=7865, help="Listen port")
        parser.add_argument(
            "--pycmd", type=str, default="python", help="Python command"
        )
        parser.add_argument("--colab", action="store_true", help="Launch in colab")
        parser.add_argument(
            "--noparallel", action="store_true", help="Disable parallel processing"
        )
        parser.add_argument(
            "--noautoopen",
            action="store_true",
            help="Do not open in browser automatically",
        )
        parser.add_argument('--api', action="store_true", default=False)
        parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
        parser.add_argument("--files", action="store_true", default=False, help="load audio from path")
        cmd_opts = parser.parse_args()

        cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865

        return (
            cmd_opts.pycmd,
            cmd_opts.port,
            cmd_opts.colab,
            cmd_opts.noparallel,
            cmd_opts.noautoopen,
            cmd_opts.api,
            cmd_opts.share,
            cmd_opts.files,
        )

    def device_config(self) -> tuple:
        if torch.cuda.is_available():
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                or "P40" in self.gpu_name.upper()
                or "1060" in self.gpu_name
                or "1070" in self.gpu_name
                or "1080" in self.gpu_name
            ):
                print("16系/10系显卡和P40强制单精度")
                self.is_half = False
                for config_file in ["32k.json", "40k.json", "48k.json"]:
                    with open(f"configs/{config_file}", "r") as f:
                        strr = f.read().replace("true", "false")
                    with open(f"configs/{config_file}", "w") as f:
                        f.write(strr)
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
            else:
                self.gpu_name = None
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
            if self.gpu_mem <= 4:
                with open("trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open("trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
        elif torch.backends.mps.is_available():
            print("没有发现支持的N卡, 使用MPS进行推理")
            self.device = "mps"
            self.is_half = False
        else:
            print("没有发现支持的N卡, 使用CPU进行推理")
            self.device = "cpu"
            self.is_half = False

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            # 6G显存配置
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5G显存配置
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem != None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        return x_pad, x_query, x_center, x_max