File size: 13,482 Bytes
5937d96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b9d53
5937d96
56b9d53
 
5937d96
 
 
 
 
4d971ad
5937d96
 
4d971ad
 
 
56b9d53
5937d96
 
 
 
 
 
56b9d53
5937d96
 
 
 
 
 
 
 
 
4d971ad
5937d96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b9d53
5937d96
 
 
 
 
56b9d53
 
 
 
 
 
 
 
5937d96
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Agung Wijaya - WebUI 2023 - Gradio
# file app.py

# Import
import os
import psutil
import shutil
import numpy as np
import gradio as gr
import subprocess
from pathlib import Path
import ffmpeg
import json
import re
import time
import random
import torch
import librosa
import util

from config import device
from infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono
)
from vc_infer_pipeline import VC
from typing import Union
from os import path, getenv
from datetime import datetime
from scipy.io.wavfile import write

# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21  # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'

# Set High Quality (.wav) or not (.mp3)
high_quality = True

# Read config.json
config_json = json.loads(open("config.json").read())

# Load hubert model
hubert_model = util.load_hubert_model(device, 'hubert_base.pt')
hubert_model.eval()

# Load models
loaded_models = []
for model_name in config_json.get('models'):
    print(f'Loading model: {model_name}')

    # Load model info
    model_info = json.load(
        open(path.join('model', model_name, 'config.json'), 'r')
    )

    # Load RVC checkpoint
    cpt = torch.load(
        path.join('model', model_name, model_info['model']),
        map_location='cpu'
    )
    
    tgt_sr = cpt['config'][-1]
    
    cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0]  # n_spk

    if_f0 = cpt.get('f0', 1)
    net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono]
    if if_f0 == 1:
        net_g = SynthesizerTrnMs256NSFsid(
            *cpt['config'],
            is_half=util.is_half(device)
        )
    else:
        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])

    del net_g.enc_q

    # According to original code, this thing seems necessary.
    print(net_g.load_state_dict(cpt['weight'], strict=False))

    net_g.eval().to(device)
    net_g = net_g.half() if util.is_half(device) else net_g.float()

    vc = VC(tgt_sr, device, util.is_half(device))

    loaded_models.append(dict(
        name=model_name,
        metadata=model_info,
        vc=vc,
        net_g=net_g,
        if_f0=if_f0,
        target_sr=tgt_sr
    ))
print(f'Models loaded: {len(loaded_models)}')

# Command line test
def command_line_test():
    command = "df -h /home/user/app"
    process = subprocess.run(command.split(), stdout=subprocess.PIPE)
    result  = process.stdout.decode()
    return gr.HTML(value=result)

# Check junk files && delete
def check_junk():
    # Find and delete all files after 10 minutes
    os.system("find ./ytaudio/* -mmin +10 -delete")
    os.system("find ./output/* -mmin +10 -delete")
    os.system("find /tmp/gradio/* -mmin +5 -delete")
    os.system("find /tmp/*.wav -mmin +5 -delete")
    print("Junk files has been deleted!")

# Function Information
def information():
    stats = os.system("du -s /content -h")
    disk_usage  = "Disk usage: "+str(stats)
    info = "<p>"+disk_usage+"<br/></p>"
    return gr.HTML(value=info)

# Function YouTube Downloader Audio
def youtube_downloader(
    video_identifier,
    start_time,
    end_time,
    output_filename="track.wav",
    num_attempts=5,
    url_base="",
    quiet=False,
    force=True,
):
    output_path = Path(output_filename)
    if output_path.exists():
        if not force:
            return output_path
        else:
            output_path.unlink()

    quiet = "--quiet --no-warnings" if quiet else ""
    command = f"""
        yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"  # noqa: E501
    """.strip()

    attempts = 0
    while True:
        try:
            _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError:
            attempts += 1
            if attempts == num_attempts:
                return None
        else:
            break

    if output_path.exists():
        return output_path
    else:
        return None
    
# Function Audio Separated
def audio_separated(audio_input, progress=gr.Progress()):
    # start progress
    progress(progress=0, desc="Starting...")
    time.sleep(1)

    # check file input
    if audio_input is None:
        # show progress
        for i in progress.tqdm(range(100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, None, 'Please input audio.')

    # create filename
    filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
    
    # progress
    progress(progress=0.10, desc="Please wait...")
    
    # make dir output
    os.makedirs("output", exist_ok=True)
    
    # progress
    progress(progress=0.20, desc="Please wait...")
    
    # write
    if high_quality:
        write(filename+".wav", audio_input[0], audio_input[1])
    else:
        write(filename+".mp3", audio_input[0], audio_input[1])
        
    # progress
    progress(progress=0.50, desc="Please wait...")

    # demucs process
    if high_quality:
        command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
    else:
        command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
    
    os.system(command_demucs)
    
    # progress
    progress(progress=0.70, desc="Please wait...")
    
    # remove file audio
    if high_quality:
        command_delete = "rm -v ./"+filename+".wav"
    else:
        command_delete = "rm -v ./"+filename+".mp3"
    
    os.system(command_delete)
    
    # progress
    progress(progress=0.80, desc="Please wait...")
    
    # progress
    for i in progress.tqdm(range(80,100), desc="Please wait..."):
        time.sleep(0.1)

    if high_quality:
        return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
    else:
        return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."
        
# Function Voice Changer
def voice_changer(audio_input, model_index, pitch_adjust, f0_method, feat_ratio, progress=gr.Progress()):
    # start progress
    progress(progress=0, desc="Starting...")
    time.sleep(1)
    
    # check file input
    if audio_input is None:
        # progress
        for i in progress.tqdm(range(100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, 'Please input audio.')
        
    # check model input
    if model_index is None:
        # progress
        for i in progress.tqdm(range(100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, 'Please select a model.')

    model = loaded_models[model_index]

    # Reference: so-vits
    (audio_samp, audio_npy) = audio_input

    # progress
    progress(progress=0.10, desc="Please wait...")

    # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
    if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space:
        
        # progress
        for i in progress.tqdm(range(10,100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, 'Input audio is longer than 60 secs.')

    # Bloody hell: https://stackoverflow.com/questions/26921836/
    if audio_npy.dtype != np.float32:  # :thonk:
        audio_npy = (
            audio_npy / np.iinfo(audio_npy.dtype).max
        ).astype(np.float32)
        
    # progress
    progress(progress=0.30, desc="Please wait...")

    if len(audio_npy.shape) > 1:
        audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))

    # progress
    progress(progress=0.40, desc="Please wait...")

    if audio_samp != 16000:
        audio_npy = librosa.resample(
            audio_npy,
            orig_sr=audio_samp,
            target_sr=16000
        )

    # progress
    progress(progress=0.50, desc="Please wait...")
    
    pitch_int = int(pitch_adjust)

    times = [0, 0, 0]
    output_audio = model['vc'].pipeline(
        hubert_model,
        model['net_g'],
        model['metadata'].get('speaker_id', 0),
        audio_npy,
        times,
        pitch_int,
        f0_method,
        path.join('model', model['name'], model['metadata']['feat_index']),
        path.join('model', model['name'], model['metadata']['feat_npy']),
        feat_ratio,
        model['if_f0']
    )

    # progress
    progress(progress=0.80, desc="Please wait...")

    print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')

    # progress
    for i in progress.tqdm(range(80,100), desc="Please wait..."):
        time.sleep(0.1)

    return ((model['target_sr'], output_audio), 'Successfully...')
    
# Function Text to Voice
def text_to_voice(text_input, model_index):
    # start progress
    progress(progress=0, desc="Starting...")
    time.sleep(1)
    
    # check text input
    if text_input is None:
        # progress
        for i in progress.tqdm(range(2,100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, 'Please write text.')
        
    # check model input
    if model_index is None:
        # progress
        for i in progress.tqdm(range(2,100), desc="Please wait..."):
            time.sleep(0.1)
            
        return (None, 'Please select a model.')

    # progress
    for i in progress.tqdm(range(2,100), desc="Please wait..."):
        time.sleep(0.1)
            
    return None, "Sorry, you can't use it yet because this program is being developed!"

# Themes
theme = gr.themes.Base()

# CSS
css = "footer {visibility: hidden}"

# Blocks
with gr.Blocks(theme=theme, css=css) as App:

    # Header
    gr.HTML("<center>"
            "<h1>🥳🎶🎡 - AI歌手,RVC歌声转换</h1>"
            "</center>")
    gr.Markdown("### <center>🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>")
    gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
    # Information
    with gr.Accordion("Just information!"):
        information()
    
    # Tab YouTube Downloader
    with gr.Tab("🤗 - b站视频提取声音"):
        with gr.Row():
            with gr.Column():
                ydl_url_input  = gr.Textbox(label="b站视频的网址(https://...)")
                start = gr.Number(value=0, label="起始时间 (秒)")
                end = gr.Number(value=15, label="结束时间 (秒)")
                ydl_url_submit = gr.Button("提取声音文件吧", variant="primary")
            with gr.Column():
                ydl_audio_output = gr.Audio(label="Audio from YouTube")

        with gr.Row():
            with gr.Column():
                as_audio_input  = ydl_audio_output
                as_audio_submit = gr.Button("去除背景音吧", variant="primary")
            with gr.Column():
                as_audio_vocals    = gr.Audio(label="Vocal only")
                as_audio_no_vocals = gr.Audio(label="Music only")
                as_audio_message   = gr.Textbox(label="Message", visible=False)
                
    ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output])
    as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)

    # Tab Voice Changer
    with gr.Tab("🎶 - 歌声转换"):
        with gr.Row():
            with gr.Column():
                vc_audio_input  = as_audio_vocals
                vc_model_index  = gr.Dropdown(
                    [
                        '%s' % (
                            m['metadata'].get('name')
                        )
                        for m in loaded_models
                    ],
                    label='Models',
                    type='index'
                )
                vc_pitch_adjust = gr.Slider(label='Pitch', minimum=-24, maximum=24, step=1, value=0)
                vc_f0_method    = gr.Radio(label='F0 methods', choices=['pm', 'harvest'], value='pm', interactive=True)
                vc_feat_ratio   = gr.Slider(label='Feature ratio', minimum=0, maximum=1, step=0.1, value=0.6)
                vc_audio_submit = gr.Button("进行歌声转换吧!", variant="primary")
            with gr.Column():
                vc_audio_output  = gr.Audio(label="Result audio", type="numpy")
                vc_audio_message = gr.Textbox(label="Message")
    vc_audio_submit.click(fn=voice_changer, inputs=[vc_audio_input, vc_model_index, vc_pitch_adjust, vc_f0_method, vc_feat_ratio], outputs=[vc_audio_output, vc_audio_message], show_progress=True, queue=True)

    gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。用户生成内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。</center>")
    gr.HTML('''
        <div class="footer">
                    <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                    </p>
        </div>
    ''')

# Check Junk
check_junk()
    
# Launch
App.queue(concurrency_count=1, max_size=20).launch(server_name="0.0.0.0", server_port=7860)

# Enjoy