Spaces:
Runtime error
Runtime error
File size: 12,617 Bytes
5937d96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# Agung Wijaya - WebUI 2023 - Gradio
# file app.py
# Import
import os
import psutil
import shutil
import numpy as np
import gradio as gr
import subprocess
from pathlib import Path
import ffmpeg
import json
import re
import time
import random
import torch
import librosa
import util
from config import device
from infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono
)
from vc_infer_pipeline import VC
from typing import Union
from os import path, getenv
from datetime import datetime
from scipy.io.wavfile import write
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'
# Set High Quality (.wav) or not (.mp3)
high_quality = True
# Read config.json
config_json = json.loads(open("config.json").read())
# Load hubert model
hubert_model = util.load_hubert_model(device, 'hubert_base.pt')
hubert_model.eval()
# Load models
loaded_models = []
for model_name in config_json.get('models'):
print(f'Loading model: {model_name}')
# Load model info
model_info = json.load(
open(path.join('model', model_name, 'config.json'), 'r')
)
# Load RVC checkpoint
cpt = torch.load(
path.join('model', model_name, model_info['model']),
map_location='cpu'
)
tgt_sr = cpt['config'][-1]
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
if_f0 = cpt.get('f0', 1)
net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono]
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt['config'],
is_half=util.is_half(device)
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])
del net_g.enc_q
# According to original code, this thing seems necessary.
print(net_g.load_state_dict(cpt['weight'], strict=False))
net_g.eval().to(device)
net_g = net_g.half() if util.is_half(device) else net_g.float()
vc = VC(tgt_sr, device, util.is_half(device))
loaded_models.append(dict(
name=model_name,
metadata=model_info,
vc=vc,
net_g=net_g,
if_f0=if_f0,
target_sr=tgt_sr
))
print(f'Models loaded: {len(loaded_models)}')
# Command line test
def command_line_test():
command = "df -h /home/user/app"
process = subprocess.run(command.split(), stdout=subprocess.PIPE)
result = process.stdout.decode()
return gr.HTML(value=result)
# Check junk files && delete
def check_junk():
# Find and delete all files after 10 minutes
os.system("find ./ytaudio/* -mmin +10 -delete")
os.system("find ./output/* -mmin +10 -delete")
os.system("find /tmp/gradio/* -mmin +5 -delete")
os.system("find /tmp/*.wav -mmin +5 -delete")
print("Junk files has been deleted!")
# Function Information
def information():
stats = os.system("du -s /content -h")
disk_usage = "Disk usage: "+str(stats)
info = "<p>"+disk_usage+"<br/></p>"
return gr.HTML(value=info)
# Function YouTube Downloader Audio
def youtube_downloader(
video_identifier,
start_time,
end_time,
output_filename="track.wav",
num_attempts=5,
url_base="",
quiet=False,
force=True,
):
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
# Function Audio Separated
def audio_separated(audio_input, progress=gr.Progress()):
# start progress
progress(progress=0, desc="Starting...")
time.sleep(1)
# check file input
if audio_input is None:
# show progress
for i in progress.tqdm(range(100), desc="Please wait..."):
time.sleep(0.1)
return (None, None, 'Please input audio.')
# create filename
filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
# progress
progress(progress=0.10, desc="Please wait...")
# make dir output
os.makedirs("output", exist_ok=True)
# progress
progress(progress=0.20, desc="Please wait...")
# write
if high_quality:
write(filename+".wav", audio_input[0], audio_input[1])
else:
write(filename+".mp3", audio_input[0], audio_input[1])
# progress
progress(progress=0.50, desc="Please wait...")
# demucs process
if high_quality:
command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
else:
command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
os.system(command_demucs)
# progress
progress(progress=0.70, desc="Please wait...")
# remove file audio
if high_quality:
command_delete = "rm -v ./"+filename+".wav"
else:
command_delete = "rm -v ./"+filename+".mp3"
os.system(command_delete)
# progress
progress(progress=0.80, desc="Please wait...")
# progress
for i in progress.tqdm(range(80,100), desc="Please wait..."):
time.sleep(0.1)
if high_quality:
return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
else:
return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."
# Function Voice Changer
def voice_changer(audio_input, model_index, pitch_adjust, f0_method, feat_ratio, progress=gr.Progress()):
# start progress
progress(progress=0, desc="Starting...")
time.sleep(1)
# check file input
if audio_input is None:
# progress
for i in progress.tqdm(range(100), desc="Please wait..."):
time.sleep(0.1)
return (None, 'Please input audio.')
# check model input
if model_index is None:
# progress
for i in progress.tqdm(range(100), desc="Please wait..."):
time.sleep(0.1)
return (None, 'Please select a model.')
model = loaded_models[model_index]
# Reference: so-vits
(audio_samp, audio_npy) = audio_input
# progress
progress(progress=0.10, desc="Please wait...")
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space:
# progress
for i in progress.tqdm(range(10,100), desc="Please wait..."):
time.sleep(0.1)
return (None, 'Input audio is longer than 60 secs.')
# Bloody hell: https://stackoverflow.com/questions/26921836/
if audio_npy.dtype != np.float32: # :thonk:
audio_npy = (
audio_npy / np.iinfo(audio_npy.dtype).max
).astype(np.float32)
# progress
progress(progress=0.30, desc="Please wait...")
if len(audio_npy.shape) > 1:
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
# progress
progress(progress=0.40, desc="Please wait...")
if audio_samp != 16000:
audio_npy = librosa.resample(
audio_npy,
orig_sr=audio_samp,
target_sr=16000
)
# progress
progress(progress=0.50, desc="Please wait...")
pitch_int = int(pitch_adjust)
times = [0, 0, 0]
output_audio = model['vc'].pipeline(
hubert_model,
model['net_g'],
model['metadata'].get('speaker_id', 0),
audio_npy,
times,
pitch_int,
f0_method,
path.join('model', model['name'], model['metadata']['feat_index']),
path.join('model', model['name'], model['metadata']['feat_npy']),
feat_ratio,
model['if_f0']
)
# progress
progress(progress=0.80, desc="Please wait...")
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
# progress
for i in progress.tqdm(range(80,100), desc="Please wait..."):
time.sleep(0.1)
return ((model['target_sr'], output_audio), 'Successfully...')
# Function Text to Voice
def text_to_voice(text_input, model_index):
# start progress
progress(progress=0, desc="Starting...")
time.sleep(1)
# check text input
if text_input is None:
# progress
for i in progress.tqdm(range(2,100), desc="Please wait..."):
time.sleep(0.1)
return (None, 'Please write text.')
# check model input
if model_index is None:
# progress
for i in progress.tqdm(range(2,100), desc="Please wait..."):
time.sleep(0.1)
return (None, 'Please select a model.')
# progress
for i in progress.tqdm(range(2,100), desc="Please wait..."):
time.sleep(0.1)
return None, "Sorry, you can't use it yet because this program is being developed!"
# Themes
theme = gr.themes.Base()
# CSS
css = "footer {visibility: hidden}"
# Blocks
with gr.Blocks(theme=theme, css=css) as App:
# Header
gr.HTML("<center>"
"<h1>Web UI Tools - Agung Wijaya</h1>"
"</center>")
# Information
with gr.Accordion("Just information!"):
information()
# Tab YouTube Downloader
with gr.Tab("YouTube Video to Audio"):
with gr.Row():
with gr.Column():
ydl_url_input = gr.Textbox(label="Enter URL YouTube")
start = gr.Number(value=0, label="Start Time (seconds)")
end = gr.Number(value=15, label="End Time (seconds)")
ydl_url_submit = gr.Button("Convert Now", variant="primary")
with gr.Column():
ydl_audio_output = gr.Audio(label="Audio from YouTube")
with gr.Row():
with gr.Column():
as_audio_input = ydl_audio_output
as_audio_submit = gr.Button("Separated Now", variant="primary")
with gr.Column():
as_audio_vocals = gr.Audio(label="Vocal only")
as_audio_no_vocals = gr.Audio(label="Music only")
as_audio_message = gr.Textbox(label="Message", visible=False)
ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output])
as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)
# Tab Voice Changer
with gr.Tab("Voice to AI Models"):
with gr.Row():
with gr.Column():
vc_audio_input = as_audio_vocals
vc_model_index = gr.Dropdown(
[
'%s' % (
m['metadata'].get('name')
)
for m in loaded_models
],
label='Models',
type='index'
)
vc_pitch_adjust = gr.Slider(label='Pitch', minimum=-24, maximum=24, step=1, value=0)
vc_f0_method = gr.Radio(label='F0 methods', choices=['pm', 'harvest'], value='pm', interactive=True)
vc_feat_ratio = gr.Slider(label='Feature ratio', minimum=0, maximum=1, step=0.1, value=0.6)
vc_audio_submit = gr.Button("Convert Now", variant="primary")
with gr.Column():
vc_audio_output = gr.Audio(label="Result audio", type="numpy")
vc_audio_message = gr.Textbox(label="Message")
vc_audio_submit.click(fn=voice_changer, inputs=[vc_audio_input, vc_model_index, vc_pitch_adjust, vc_f0_method, vc_feat_ratio], outputs=[vc_audio_output, vc_audio_message], show_progress=True, queue=True)
# Check Junk
check_junk()
# Launch
App.queue(concurrency_count=1, max_size=20).launch(server_name="0.0.0.0", server_port=7860)
# Enjoy |