# Agung Wijaya - WebUI 2023 - Gradio # file app.py # Import import os import psutil import shutil import numpy as np import gradio as gr import subprocess from pathlib import Path import ffmpeg import json import re import time import random import torch import librosa import util import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont from moviepy.editor import * from moviepy.video.io.VideoFileClip import VideoFileClip from config import device from infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono ) from vc_infer_pipeline import VC from typing import Union from os import path, getenv from datetime import datetime from scipy.io.wavfile import write from pydub import AudioSegment title_markdown = ("""

syz

""") title_markdown2 = ("""

vae

""") # Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa in_hf_space = getenv('SYSTEM') == 'spaces' # Set High Quality (.wav) or not (.mp3) high_quality = True # Read config.json config_json = json.loads(open("config.json").read()) # Load hubert model hubert_model = util.load_hubert_model(device, 'hubert_base.pt') hubert_model.eval() # Load models loaded_models = [] for model_name in config_json.get('models'): print(f'Loading model: {model_name}') # Load model info model_info = json.load( open(path.join('model', model_name, 'config.json'), 'r') ) # Load RVC checkpoint cpt = torch.load( path.join('model', model_name, model_info['model']), map_location='cpu' ) tgt_sr = cpt['config'][-1] cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk if_f0 = cpt.get('f0', 1) net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono] if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt['config'], is_half=util.is_half(device) ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config']) del net_g.enc_q # According to original code, this thing seems necessary. print(net_g.load_state_dict(cpt['weight'], strict=False)) net_g.eval().to(device) net_g = net_g.half() if util.is_half(device) else net_g.float() vc = VC(tgt_sr, device, util.is_half(device)) loaded_models.append(dict( name=model_name, metadata=model_info, vc=vc, net_g=net_g, if_f0=if_f0, target_sr=tgt_sr )) print(f'Models loaded: {len(loaded_models)}') def make_bars_image(height_values, index, new_height): # Define the size of the image width = 512 height = new_height # Create a new image with a transparent background image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0)) # Get the image drawing context draw = ImageDraw.Draw(image) # Define the rectangle width and spacing rect_width = 2 spacing = 2 # Define the list of height values for the rectangles #height_values = [20, 40, 60, 80, 100, 80, 60, 40] num_bars = len(height_values) # Calculate the total width of the rectangles and the spacing total_width = num_bars * rect_width + (num_bars - 1) * spacing # Calculate the starting position for the first rectangle start_x = int((width - total_width) / 2) # Define the buffer size buffer_size = 80 # Draw the rectangles from left to right x = start_x for i, height in enumerate(height_values): # Define the rectangle coordinates y0 = buffer_size y1 = height + buffer_size x0 = x x1 = x + rect_width # Draw the rectangle draw.rectangle([x0, y0, x1, y1], fill='white') # Move to the next rectangle position if i < num_bars - 1: x += rect_width + spacing # Rotate the image by 180 degrees image = image.rotate(180) # Mirror the image image = image.transpose(Image.FLIP_LEFT_RIGHT) # Save the image image.save('audio_bars_'+ str(index) + '.png') return 'audio_bars_'+ str(index) + '.png' def db_to_height(db_value): # Scale the dB value to a range between 0 and 1 scaled_value = (db_value + 80) / 80 # Convert the scaled value to a height between 0 and 100 height = scaled_value * 50 return height def infer(title, audio_in, image_in): # Load the audio file audio_path = audio_in audio_data, sr = librosa.load(audio_path) # Get the duration in seconds duration = librosa.get_duration(y=audio_data, sr=sr) # Extract the audio data for the desired time start_time = 0 # start time in seconds end_time = duration # end time in seconds start_index = int(start_time * sr) end_index = int(end_time * sr) audio_data = audio_data[start_index:end_index] # Compute the short-time Fourier transform hop_length = 512 stft = librosa.stft(audio_data, hop_length=hop_length) spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max) # Get the frequency values freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0]) # Select the indices of the frequency values that correspond to the desired frequencies n_freqs = 114 freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int) # Extract the dB values for the desired frequencies db_values = [] for i in range(spectrogram.shape[1]): db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i]))) # Print the dB values for the first time frame print(db_values[0]) proportional_values = [] for frame in db_values: proportional_frame = [db_to_height(db) for f, db in frame] proportional_values.append(proportional_frame) print(proportional_values[0]) print("AUDIO CHUNK: " + str(len(proportional_values))) # Open the background image background_image = Image.open(image_in) # Resize the image while keeping its aspect ratio bg_width, bg_height = background_image.size aspect_ratio = bg_width / bg_height new_width = 512 new_height = int(new_width / aspect_ratio) resized_bg = background_image.resize((new_width, new_height)) # Apply black cache for better visibility of the white text bg_cache = Image.open('black_cache.png') resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache) # Create a new ImageDraw object draw = ImageDraw.Draw(resized_bg) # Define the text to be added text = title font = ImageFont.truetype("Lato-Regular.ttf", 16) text_color = (255, 255, 255) # white color # Calculate the position of the text text_width, text_height = draw.textsize(text, font=font) x = 30 y = new_height - 70 # Draw the text on the image draw.text((x, y), text, fill=text_color, font=font) # Save the resized image resized_bg.save('resized_background.jpg') generated_frames = [] for i, frame in enumerate(proportional_values): bars_img = make_bars_image(frame, i, new_height) bars_img = Image.open(bars_img) # Paste the audio bars image on top of the background image fresh_bg = Image.open('resized_background.jpg') fresh_bg.paste(bars_img, (0, 0), mask=bars_img) # Save the image fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg') generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg') print(generated_frames) # Create a video clip from the images clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time)) audio_clip = AudioFileClip(audio_in) clip = clip.set_audio(audio_clip) # Set the output codec codec = 'libx264' audio_codec = 'aac' # Save the video to a file clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec) retimed_clip = VideoFileClip("my_video.mp4") # Set the desired frame rate new_fps = 25 # Create a new clip with the new frame rate new_clip = retimed_clip.set_fps(new_fps) # Save the new clip as a new video file new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec) return "my_video_retimed.mp4" # Command line test def command_line_test(): command = "df -h /home/user/app" process = subprocess.run(command.split(), stdout=subprocess.PIPE) result = process.stdout.decode() return gr.HTML(value=result) def mix(audio1, audio2): sound1 = AudioSegment.from_file(audio1) sound2 = AudioSegment.from_file(audio2) length = len(sound1) mixed = sound1[:length].overlay(sound2) mixed.export("song.wav", format="wav") return "song.wav" # Function YouTube Downloader Audio def youtube_downloader( video_identifier, start_time, end_time, output_filename="track.wav", num_attempts=5, url_base="", quiet=False, force=True, ): output_path = Path(output_filename) if output_path.exists(): if not force: return output_path else: output_path.unlink() quiet = "--quiet --no-warnings" if quiet else "" command = f""" yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 """.strip() attempts = 0 while True: try: _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: attempts += 1 if attempts == num_attempts: return None else: break if output_path.exists(): return output_path else: return None # Function Audio Separated def audio_separated(audio_input, progress=gr.Progress()): # start progress progress(progress=0, desc="Starting...") time.sleep(0.1) # check file input if audio_input is None: # show progress for i in progress.tqdm(range(100), desc="Please wait..."): time.sleep(0.01) return (None, None, 'Please input audio.') # create filename filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S") # progress progress(progress=0.10, desc="Please wait...") # make dir output os.makedirs("output", exist_ok=True) # progress progress(progress=0.20, desc="Please wait...") # write if high_quality: write(filename+".wav", audio_input[0], audio_input[1]) else: write(filename+".mp3", audio_input[0], audio_input[1]) # progress progress(progress=0.50, desc="Please wait...") # demucs process if high_quality: command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output" else: command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output" os.system(command_demucs) # progress progress(progress=0.70, desc="Please wait...") # remove file audio if high_quality: command_delete = "rm -v ./"+filename+".wav" else: command_delete = "rm -v ./"+filename+".mp3" os.system(command_delete) # progress progress(progress=0.80, desc="Please wait...") # progress for i in progress.tqdm(range(80,100), desc="Please wait..."): time.sleep(0.1) if high_quality: return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..." else: return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..." # Function Voice Changer def voice_changer(audio_input, model_index, pitch_adjust, f0_method, feat_ratio, progress=gr.Progress()): # start progress progress(progress=0, desc="Starting...") time.sleep(1) # check file input if audio_input is None: # progress for i in progress.tqdm(range(100), desc="Please wait..."): time.sleep(0.1) return (None, 'Please input audio.') # check model input if model_index is None: # progress for i in progress.tqdm(range(100), desc="Please wait..."): time.sleep(0.1) return (None, 'Please select a model.') model = loaded_models[model_index] # Reference: so-vits (audio_samp, audio_npy) = audio_input # progress progress(progress=0.10, desc="Please wait...") # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49 if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space: # progress for i in progress.tqdm(range(10,100), desc="Please wait..."): time.sleep(0.1) return (None, 'Input audio is longer than 60 secs.') # Bloody hell: https://stackoverflow.com/questions/26921836/ if audio_npy.dtype != np.float32: # :thonk: audio_npy = ( audio_npy / np.iinfo(audio_npy.dtype).max ).astype(np.float32) # progress progress(progress=0.30, desc="Please wait...") if len(audio_npy.shape) > 1: audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) # progress progress(progress=0.40, desc="Please wait...") if audio_samp != 16000: audio_npy = librosa.resample( audio_npy, orig_sr=audio_samp, target_sr=16000 ) # progress progress(progress=0.50, desc="Please wait...") pitch_int = int(pitch_adjust) times = [0, 0, 0] output_audio = model['vc'].pipeline( hubert_model, model['net_g'], model['metadata'].get('speaker_id', 0), audio_npy, times, pitch_int, f0_method, path.join('model', model['name'], model['metadata']['feat_index']), path.join('model', model['name'], model['metadata']['feat_npy']), feat_ratio, model['if_f0'] ) # progress progress(progress=0.80, desc="Please wait...") print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') # progress for i in progress.tqdm(range(80,100), desc="Please wait..."): time.sleep(0.1) return ((model['target_sr'], output_audio), 'Successfully...') # Function Text to Voice def text_to_voice(text_input, model_index): # start progress progress(progress=0, desc="Starting...") time.sleep(1) # check text input if text_input is None: # progress for i in progress.tqdm(range(2,100), desc="Please wait..."): time.sleep(0.1) return (None, 'Please write text.') # check model input if model_index is None: # progress for i in progress.tqdm(range(2,100), desc="Please wait..."): time.sleep(0.1) return (None, 'Please select a model.') # progress for i in progress.tqdm(range(2,100), desc="Please wait..."): time.sleep(0.1) return None, "Sorry, you can't use it yet because this program is being developed!" # Themes theme = gr.themes.Base() # CSS css = "footer {visibility: hidden}" # Blocks with gr.Blocks(theme=theme, css=css) as App: # Header gr.HTML("
" "

🥳🎶🎡 - AI歌手,RVC歌声转换

" "
") gr.Markdown("###
🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
") gr.Markdown("###
更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕
") # Information with gr.Accordion("🎙️您的AI歌手Stefanie:"): gr.Markdown(title_markdown) with gr.Accordion("🎤您的AI歌手Vae:"): gr.Markdown(title_markdown2) # Tab YouTube Downloader with gr.Tab("🤗 - B站视频提取声音"): with gr.Row(): with gr.Column(): ydl_url_input = gr.Textbox(label="B站视频网址(请填写相应的BV号)", value = "https://www.bilibili.com/video/BV...") start = gr.Number(value=0, label="起始时间 (秒)") end = gr.Number(value=15, label="结束时间 (秒)") ydl_url_submit = gr.Button("提取声音文件吧", variant="primary") as_audio_submit = gr.Button("去除背景音吧", variant="primary") with gr.Column(): ydl_audio_output = gr.Audio(label="Audio from Bilibili") as_audio_input = ydl_audio_output as_audio_vocals = gr.Audio(label="Vocal only") as_audio_no_vocals = gr.Audio(label="Music only", type="filepath") as_audio_message = gr.Textbox(label="Message", visible=False) ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output]) as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True) # Tab Voice Changer with gr.Tab("🎶 - 歌声转换"): with gr.Row(): with gr.Column(): vc_audio_input = as_audio_vocals vc_model_index = gr.Dropdown( [ '%s' % ( m['metadata'].get('name') ) for m in loaded_models ], label='Models', type='index' ) vc_pitch_adjust = gr.Slider(label='Pitch', minimum=-24, maximum=24, step=1, value=0) vc_f0_method = gr.Radio(label='F0 methods', choices=['pm', 'harvest'], value='pm', interactive=True) vc_feat_ratio = gr.Slider(label='Feature ratio', minimum=0, maximum=1, step=0.1, value=0.6) vc_audio_submit = gr.Button("进行歌声转换吧!", variant="primary") full_song = gr.Button("加入歌曲伴奏吧!", variant="primary") with gr.Column(): vc_audio_output = gr.Audio(label="Result audio", type="filepath") vc_audio_message = gr.Textbox(label="Message") new_song = gr.Audio(label="Full song", type="filepath") vc_audio_submit.click(fn=voice_changer, inputs=[vc_audio_input, vc_model_index, vc_pitch_adjust, vc_f0_method, vc_feat_ratio], outputs=[vc_audio_output, vc_audio_message], show_progress=True, queue=True) full_song.click(fn=mix, inputs=[vc_audio_output, as_audio_no_vocals], outputs=[new_song]) with gr.Tab("📺 - 音乐视频"): with gr.Row(): with gr.Column(): inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填)") inp2 = new_song out1 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧") btn = gr.Button("生成您的专属音乐视频吧") with gr.Column(): out1 = gr.Video(label='您的专属音乐视频') btn.click(fn=infer, inputs=[inp1, inp2], outputs=[out1]) gr.Markdown("###
注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。
") gr.HTML(''' ''') # Launch App.queue(concurrency_count=1, max_size=20).launch(server_name="0.0.0.0", server_port=7860, show_error=True) # Enjoy