Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer, pipeline | |
import gradio as gr | |
from PIL import Image | |
# Load OCR model | |
# tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, device_map='cuda', low_cpu_mem_usage=True) | |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) | |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval() | |
# Summarization model | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Question-Answering model (English) | |
pipe_qa_en = pipeline('question-answering', model="deepset/roberta-base-squad2") | |
# Question-Answering model (Arabic) | |
pipe_qa_ar = pipeline("question-answering", model="gp-tar4/QA_FineTuned") | |
# Translation model (English to Arabic) | |
pipe_to_arabic = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar") | |
def summarize(text): | |
# Summarize the text | |
summary = summarizer(text, max_length=200, min_length=30, do_sample=False) | |
return summary[0]['summary_text'] | |
def question_answering(question, context, language='english'): | |
QA_input = {'question': question, 'context': context} | |
if language == 'arabic': | |
return pipe_qa_ar(QA_input)['answer'] | |
return pipe_qa_en(QA_input)['answer'] | |
def to_arabic(text, max_length=512): | |
# Split the text into chunks if it is more than 512 characters | |
chunks = [text[i:i+max_length] for i in range(0, len(text), max_length)] | |
translated_chunks = [pipe_to_arabic(chunk)[0]['translation_text'] for chunk in chunks] | |
return ' '.join(translated_chunks) | |
def process_image_and_text(image, text): | |
ocr_text = model.chat(tokenizer, image, ocr_type='ocr') | |
summarized_text = summarize(ocr_text) | |
return f"Input text: {text}\n\nProcessed OCR text: {summarized_text}" | |
def process_image_qa(language, image, question): | |
ocr_text = model.chat(tokenizer, image, ocr_type='ocr') | |
if language == 'arabic': | |
translated_text = to_arabic(ocr_text) | |
return question_answering(question, translated_text, language='arabic') | |
return question_answering(question, ocr_text) | |
# Gradio interfaces | |
summarization_Interface = gr.Interface( | |
fn=process_image_and_text, | |
inputs=[gr.Image(type="filepath", label="Upload Image"), gr.Textbox(label="Input Text")], | |
outputs=gr.Textbox(label="Output Text"), | |
title="OCR & Summarization", | |
description="Upload an image and provide some text for summarization." | |
) | |
qa_Interface = gr.Interface( | |
fn=process_image_qa, | |
inputs=[gr.Radio(['Arabic', 'English'], label='Select Language', value='Arabic'), gr.Image(type="filepath", label="Upload Image"), gr.Textbox(label="Input Question")], | |
outputs=gr.Textbox(label="Answer Text"), | |
title="OCR & Question Answering", | |
description="Upload an image and ask a question in English or Arabic." | |
) | |
# Combine both interfaces into a tabbed interface | |
apps_interface = gr.TabbedInterface([summarization_Interface, qa_Interface], tab_names=["Summarization", "Question Answering"]) | |
apps_interface.launch() | |