File size: 5,516 Bytes
f45a763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import random
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import unicodedata
import nltk
from nltk.tokenize.treebank import TreebankWordDetokenizer

nltk.download('punkt')


class Encoder(nn.Module):
    def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout):
        super().__init__()
        self.embedding = nn.Embedding(input_dim, emb_dim)
        self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
        self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, src):
        embedded = self.dropout(self.embedding(src))
        outputs, hidden = self.rnn(embedded)
        hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
        
        return outputs, hidden
    

class Attention(nn.Module):
  def __init__(self, enc_hid_dim, dec_hid_dim):
        super().__init__()
        self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim)
        self.v = nn.Linear(dec_hid_dim, 1, bias = False)

  def forward(self, hidden, encoder_outputs):
    batch_size = encoder_outputs.shape[1]
    src_len = encoder_outputs.shape[0]

    hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
    encoder_outputs = encoder_outputs.permute(1, 0, 2)

    energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim = 2))) 
    attention = self.v(energy).squeeze(2)

    return F.softmax(attention, dim=1)


class Decoder(nn.Module):
    def __init__(self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention):
        super().__init__()
        self.output_dim = output_dim
        self.attention = attention
        self.embedding = nn.Embedding(output_dim, emb_dim)
        self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
        self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, input, hidden, encoder_outputs):
        input = input.unsqueeze(0)
        embedded = self.dropout(self.embedding(input))
        a = self.attention(hidden, encoder_outputs)
        a = a.unsqueeze(1)
        encoder_outputs = encoder_outputs.permute(1, 0, 2)
        weighted = torch.bmm(a, encoder_outputs)
        weighted = weighted.permute(1, 0, 2)
        rnn_input = torch.cat((embedded, weighted), dim = 2)
        output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))

        assert (output == hidden).all()

        embedded = embedded.squeeze(0)
        output = output.squeeze(0)
        weighted = weighted.squeeze(0)

        prediction = self.fc_out(torch.cat((output, weighted, embedded), dim = 1))
        
        return prediction, hidden.squeeze(0)
    
class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder, device):
        super().__init__()
        
        self.encoder = encoder
        self.decoder = decoder
        self.device = device
        
    def forward(self, src, trg, teacher_forcing_ratio = 0.5): 
        batch_size = trg.shape[1]
        trg_len = trg.shape[0]
        trg_vocab_size = self.decoder.output_dim
        outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)
        
        encoder_outputs, hidden = self.encoder(src)

        input = trg[0,:]
        
        for t in range(1, trg_len):
            output, hidden = self.decoder(input, hidden, encoder_outputs)
            
            outputs[t] = output
            
            teacher_force = random.random() < teacher_forcing_ratio
            top1 = output.argmax(1) 
            input = trg[t] if teacher_force else top1
        
        return outputs


def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

def tokenize_ar(text):
    """
    Tokenizes Arabic text from a string into a list of strings (tokens) and reverses it
    """
    return [tok for tok in nltk.tokenize.wordpunct_tokenize(unicodeToAscii(text))]

src_vocab = torch.load("arabic_vocab.pth")
trg_vocab = torch.load("english_vocab.pth")

INPUT_DIM = 9790
OUTPUT_DIM = 5682
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
ENC_HID_DIM = 512
DEC_HID_DIM = 512
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5

attn = Attention(ENC_HID_DIM, DEC_HID_DIM)
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)

model = Seq2Seq(enc, dec, "cpu")
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu')))


def infer(text, max_length=50):
    text = tokenize_ar(text)
    sequence = []
    sequence.append(src_vocab['<sos>'])
    sequence.extend([src_vocab[token] for token in text])
    sequence.append(src_vocab['<eos>'])

    sequence = torch.Tensor(sequence)
    sequence = sequence[:, None].to(torch.int64)
    target = torch.zeros(max_length, 1).to(torch.int64)

    with torch.no_grad():
        model.eval()
        output = model(sequence, target, 0)
        output_dim = output.shape[-1]
        output = output[1:].view(-1, output_dim)
    
    prediction = []
    for i in output:
        prediction.append(torch.argmax(i).item())
    
    tokens = trg_vocab.lookup_tokens(prediction)
    en = TreebankWordDetokenizer().detokenize(tokens).replace('<eos>', "")
    
    return re.sub(r'[^\w\s]','',en).strip()

iface = gr.Interface(fn=infer, inputs="text", outputs="text") 

iface.launch()