ARtoEN / app.py
khaled5321's picture
Update app.py
3f84a20
raw
history blame
5.52 kB
import gradio as gr
import random
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import unicodedata
import nltk
from nltk.tokenize.treebank import TreebankWordDetokenizer
nltk.download('punkt')
class Encoder(nn.Module):
def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout):
super().__init__()
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
embedded = self.dropout(self.embedding(src))
outputs, hidden = self.rnn(embedded)
hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
return outputs, hidden
class Attention(nn.Module):
def __init__(self, enc_hid_dim, dec_hid_dim):
super().__init__()
self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim)
self.v = nn.Linear(dec_hid_dim, 1, bias = False)
def forward(self, hidden, encoder_outputs):
batch_size = encoder_outputs.shape[1]
src_len = encoder_outputs.shape[0]
hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim = 2)))
attention = self.v(energy).squeeze(2)
return F.softmax(attention, dim=1)
class Decoder(nn.Module):
def __init__(self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention):
super().__init__()
self.output_dim = output_dim
self.attention = attention
self.embedding = nn.Embedding(output_dim, emb_dim)
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, input, hidden, encoder_outputs):
input = input.unsqueeze(0)
embedded = self.dropout(self.embedding(input))
a = self.attention(hidden, encoder_outputs)
a = a.unsqueeze(1)
encoder_outputs = encoder_outputs.permute(1, 0, 2)
weighted = torch.bmm(a, encoder_outputs)
weighted = weighted.permute(1, 0, 2)
rnn_input = torch.cat((embedded, weighted), dim = 2)
output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))
assert (output == hidden).all()
embedded = embedded.squeeze(0)
output = output.squeeze(0)
weighted = weighted.squeeze(0)
prediction = self.fc_out(torch.cat((output, weighted, embedded), dim = 1))
return prediction, hidden.squeeze(0)
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self, src, trg, teacher_forcing_ratio = 0.5):
batch_size = trg.shape[1]
trg_len = trg.shape[0]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
input = trg[0,:]
for t in range(1, trg_len):
output, hidden = self.decoder(input, hidden, encoder_outputs)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.argmax(1)
input = trg[t] if teacher_force else top1
return outputs
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
def tokenize_ar(text):
"""
Tokenizes Arabic text from a string into a list of strings (tokens) and reverses it
"""
return [tok for tok in nltk.tokenize.wordpunct_tokenize(unicodeToAscii(text))]
src_vocab = torch.load("arabic_vocab.pth")
trg_vocab = torch.load("english_vocab.pth")
INPUT_DIM = 9790
OUTPUT_DIM = 5682
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
ENC_HID_DIM = 512
DEC_HID_DIM = 512
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
attn = Attention(ENC_HID_DIM, DEC_HID_DIM)
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)
model = Seq2Seq(enc, dec, "cpu")
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu')))
def infer(text, max_length=50):
text = tokenize_ar(text)
sequence = []
sequence.append(src_vocab['<sos>'])
sequence.extend([src_vocab[token] for token in text])
sequence.append(src_vocab['<eos>'])
sequence = torch.Tensor(sequence)
sequence = sequence[:, None].to(torch.int64)
target = torch.zeros(max_length, 1).to(torch.int64)
with torch.no_grad():
model.eval()
output = model(sequence, target, 0)
output_dim = output.shape[-1]
output = output[1:].view(-1, output_dim)
prediction = []
for i in output:
prediction.append(torch.argmax(i).item())
tokens = trg_vocab.lookup_tokens(prediction)
en = TreebankWordDetokenizer().detokenize(tokens).replace('<eos>', "")
return re.sub(r'[^\w\s]','',en).strip()
iface = gr.Interface(fn=infer, inputs="text", outputs="text")
iface.launch()