Spaces:
Sleeping
Sleeping
File size: 1,242 Bytes
59c8923 da7e527 59c8923 da7e527 e0cb5f0 da7e527 59c8923 da7e527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from flask import Flask, request
from transformers import AutoModelForImageClassification
from transformers import AutoImageProcessor
from PIL import Image
import torch
app = Flask(__name__)
model = AutoModelForImageClassification.from_pretrained(
'./myModel')
image_processor = AutoImageProcessor.from_pretrained(
"google/vit-base-patch16-224-in21k")
@app.route('/upload_image', methods=['POST'])
def upload_image():
# Get the image file from the request
image_file = request.files['image']
# Save the image file to a desired location on the server
image_path = "assets/img.jpg"
image_file.save(image_path)
# You can perform additional operations with the image here
# ...
return "Image uploaded successfully"
@app.route('/get_text', methods=['GET'])
def get_text():
image = Image.open('assets/img.jpg')
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label = logits.argmax(-1).item()
disease = model.config.id2label[predicted_label]
return disease
@app.route('/', methods=['GET'])
def hi():
return "Hello world"
if __name__ == '__app__':
app.run(host='0.0.0.0', port=7860)
|