from transformers import pipeline import gradio as gr pipe1 = pipeline(model="khalidey/ID2223_Lab2_Whisper_SV") # change to "your-username/the-name-you-picked" pipe2 = pipeline('text-generation', model='birgermoell/swedish-gpt') def transcribe(audio): text = pipe1(audio)["text"] generated_text = pipe2(text, max_length = 50, num_return_sequences=2)[0]['generated_text'] return text, generated_text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs=[ #gr.Textbox(label='Transcribed Speech'), #gr.Textbox(label='Swedish GPT Generated Speech') 'text','text' ], title="Whisper Small Swedish + Swedish GPT", description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model & text generation with Swedish GPT.", ) iface.launch()