File size: 2,550 Bytes
fe9c48b
 
 
 
 
 
 
 
 
 
 
 
e79895a
fe9c48b
e79895a
fe9c48b
 
e79895a
fe9c48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ecaf4
 
 
 
fe9c48b
 
 
 
e79895a
 
 
fe9c48b
 
e79895a
 
 
 
 
 
 
 
fe9c48b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import numpy as np
from PIL import Image
import requests

import hopsworks
import joblib

project = hopsworks.login()
fs = project.get_feature_store()

mr = project.get_model_registry()
model = mr.get_model("incident_modal", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/incident_model.pkl")


def incident(pclass, sex, age, sibsp, parch, fare, embarked):
    input_list = []
    if sex == 'female':
        input_list.append(1.0)
        input_list.append(0.0)
    elif sex == 'male':
        input_list.append(0.0)
        input_list.append(1.0)
    else:
        print("ERROR!")
        exit()
    if embarked == "C":
        input_list.append(1.0)
        input_list.append(0.0)
        input_list.append(0.0)
    elif embarked == "Q":
        input_list.append(0.0)
        input_list.append(1.0)
        input_list.append(0.0)
    elif embarked == "S":
        input_list.append(0.0)
        input_list.append(0.0)
        input_list.append(1.0)
    else:
        print("ERROR!")
        exit()
    if age < 18:
        input_list.append(1.0)
    elif age < 55:
        input_list.append(2.0)
    else:
        input_list.append(3.0)
    input_list.append(sibsp)
    input_list.append(parch)
    input_list.append(fare)
    input_list.append(pclass)

    incident = model.predict(np.asarray(input_list).reshape(1, -1))
    incident_url = "https://raw.githubusercontent.com/Hope-Liang/ID2223Project/main/images/" + incident[0] + ".png"
    img = Image.open(requests.get(incident_url, stream=True).raw)
    
    return img


demo = gr.Interface(
    fn=incident,
    title="Incident Predictive Analytics",
    description="Experiment with incident features/attributes to predict what kind of incident category took place.",
    allow_flagging="never",
    inputs=[
        gr.inputs.Textbox(default="Saturday", label="Incident Day of Week (Saturday, Sunday etc...)"),
        gr.inputs.Textbox(default="Il", label="Report Type Code (Il, IS, Vl, VS)"),
        gr.inputs.Number(default="Northern", label="Police District (Northern, Bayview, Southern, Mission, Ingleside, Tenderloin, Taraval, Central, Richmond, Park)"),
        gr.inputs.Number(default=1.0, label="latitude"),
        gr.inputs.Number(default=1.0, label="longitude"),
        gr.inputs.Number(default=2023, label="Incident Year (e.g 2019)"),
        gr.inputs.Number(default=1, label="Incident Month (1-12)"),
        gr.inputs.Number(default=1, label="Incident Hour (0-23)"),
    ],
    outputs=gr.Image(type="pil"))

demo.launch()