import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("incident_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/incident_model.pkl") def incident(pclass, sex, age, sibsp, parch, fare, embarked): input_list = [] if sex == 'female': input_list.append(1.0) input_list.append(0.0) elif sex == 'male': input_list.append(0.0) input_list.append(1.0) else: print("ERROR!") exit() if embarked == "C": input_list.append(1.0) input_list.append(0.0) input_list.append(0.0) elif embarked == "Q": input_list.append(0.0) input_list.append(1.0) input_list.append(0.0) elif embarked == "S": input_list.append(0.0) input_list.append(0.0) input_list.append(1.0) else: print("ERROR!") exit() if age < 18: input_list.append(1.0) elif age < 55: input_list.append(2.0) else: input_list.append(3.0) input_list.append(sibsp) input_list.append(parch) input_list.append(fare) input_list.append(pclass) incident = model.predict(np.asarray(input_list).reshape(1, -1)) incident_url = "https://raw.githubusercontent.com/Hope-Liang/ID2223Project/main/images/" + incident[0] + ".png" img = Image.open(requests.get(incident_url, stream=True).raw) return img demo = gr.Interface( fn=incident, title="Incident Predictive Analytics", description="Experiment with incident features/attributes to predict what kind of incident category took place.", allow_flagging="never", inputs=[ gr.inputs.Textbox(default="Saturday", label="Incident Day of Week (Saturday, Sunday etc...)"), gr.inputs.Textbox(default="Il", label="Report Type Code (Il, IS, Vl, VS)"), gr.inputs.Number(default="Northern", label="Police District (Northern, Bayview, Southern, Mission, Ingleside, Tenderloin, Taraval, Central, Richmond, Park)"), gr.inputs.Number(default=1.0, label="latitude"), gr.inputs.Number(default=1.0, label="longitude"), gr.inputs.Number(default=2023, label="Incident Year (e.g 2019)"), gr.inputs.Number(default=1, label="Incident Month (1-12)"), gr.inputs.Number(default=1, label="Incident Hour (0-23)"), ], outputs=gr.Image(type="pil")) demo.launch()