File size: 3,157 Bytes
662a39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
import re

def cleaning_history_tuple(history):
    s=sum(history,())
    s=list(s)
    s2=""
    for i in s:
        i=re.sub("\n", '', i)
        i=re.sub("<p>", '', i)
        i=re.sub("</p>", '', i)
        s2=s2+i+'\n'
    return s2

def ai_output(string1,string2):
    a1=len(string1)
    a2=len(string2)
    string3=string2[a1:]
    sub1="A:"
    sub2="User"
    #sub3="\n"
    try:
        try:
            idx1=string3.index(sub1)
            response=string3[:idx1]
            return response
            
        except:
            idx1=string3.index(sub2)
            response=string3[:idx1]
            return response
    except:
        return string3

model4 = AutoModelForCausalLM.from_pretrained("bigscience/bloom-3b")
tokenizer4 = AutoTokenizer.from_pretrained("bigscience/bloom-3b")

def predict(input,initial_prompt, temperature=0.7,top_p=1,top_k=5,max_tokens=64,no_repeat_ngram_size=1,num_beams=6,do_sample=True, history=[]):
	
    s = cleaning_history_tuple(history)
    
    s = s+ "\n"+ "User: "+ input + "\n" + "Assistant: "
    s2=initial_prompt+" " + s
    
    input_ids = tokenizer4.encode(str(s2), return_tensors="pt")
    response = model4.generate(input_ids, min_length = 10,
                         max_new_tokens=int(max_tokens),
                         top_k=int(top_k),
                         top_p=float(top_p),
                         temperature=float(temperature),
                         no_repeat_ngram_size=int(no_repeat_ngram_size),
                         num_beams = int(num_beams),
                         do_sample = bool(do_sample),
                         )
    
  
    response2 = tokenizer4.decode(response[0])
    print("Response after decoding tokenizer: ",response2)
    print("\n\n")
    response3=ai_output(s2,response2)
    
    input="User: "+input
    response3="Assistant: "+ response3
    history.append((input, response3))

    return history, history

#gr.Interface(fn=predict,title="BLOOM-3b",
#             inputs=["text","text","text","text","text","text","text","text","text",'state'],
#            
#             outputs=["chatbot",'state']).launch()
             

gr.Interface(inputs=[gr.Textbox(label="input", lines=1, value=""),
                     gr.Textbox(label="initial_prompt", lines=1, value=prompt),
                     gr.Textbox(label="temperature", lines=1, value=0.7),
                     gr.Textbox(label="top_p", lines=1, value=1),
                     gr.Textbox(label="top_k", lines=1, value=5),
                     gr.Textbox(label="max_tokens", lines=1, value=64),
                     gr.Textbox(label="no_repeat_ngram_size", lines=1, value=1),
                     gr.Textbox(label="num_beams", lines=1, value=6),
                     gr.Textbox(label="do_sample", lines=1, value="True"), 'state'],
             fn=predict, title="OPT-6.7B", outputs=["chatbot",'state']

             #inputs=["text","text","text","text","text","text","text","text","text",'state'],

             ).launch()