Update app.py
Browse files
app.py
CHANGED
@@ -44,78 +44,72 @@ def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tenso
|
|
44 |
sequence_lengths = attention_mask.sum(dim=1) - 1
|
45 |
batch_size = last_hidden_states.shape[0]
|
46 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
|
|
47 |
def clear_cuda_cache():
|
48 |
torch.cuda.empty_cache()
|
49 |
|
50 |
def free_memory(*args):
|
51 |
for arg in args:
|
52 |
del arg
|
53 |
-
|
54 |
-
class EmbeddingModel:
|
55 |
-
def __init__(self):
|
56 |
-
self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
57 |
-
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
58 |
-
|
59 |
-
@spaces.GPU
|
60 |
-
def _compute_cosine_similarity(self, emb1, emb2):
|
61 |
-
tensor1 = torch.tensor(emb1).to(device).half()
|
62 |
-
tensor2 = torch.tensor(emb2).to(device).half()
|
63 |
-
similarity = F.cosine_similarity(tensor1, tensor2).item()
|
64 |
-
free_memory(tensor1, tensor2)
|
65 |
-
return similarity
|
66 |
-
|
67 |
-
@spaces.GPU
|
68 |
-
def compute_embeddings(self, selected_task, input_text):
|
69 |
-
try:
|
70 |
-
task_description = tasks[selected_task]
|
71 |
-
except KeyError:
|
72 |
-
print(f"Selected task not found: {selected_task}")
|
73 |
-
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
74 |
-
max_length = 2042
|
75 |
-
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
@spaces.GPU
|
88 |
-
def compute_similarity(self, selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
89 |
-
try:
|
90 |
-
task_description = tasks[selected_task]
|
91 |
-
except KeyError:
|
92 |
-
print(f"Selected task not found: {selected_task}")
|
93 |
-
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
94 |
-
# Compute embeddings for each sentence
|
95 |
-
embeddings1 = self.compute_embeddings(self.selected_task, sentence1)
|
96 |
-
embeddings2 = self.compute_embeddings(self.selected_task, sentence2)
|
97 |
-
embeddings3 = self.compute_embeddings(self.selected_task, extra_sentence1)
|
98 |
-
embeddings4 = self.compute_embeddings(self.selected_task, extra_sentence2)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
def app_interface():
|
118 |
-
embedding_model = EmbeddingModel()
|
119 |
with gr.Blocks() as demo:
|
120 |
gr.Markdown(title)
|
121 |
gr.Markdown(description)
|
@@ -127,7 +121,7 @@ def app_interface():
|
|
127 |
compute_button = gr.Button("Try🐣🛌🏻e5")
|
128 |
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
|
129 |
compute_button.click(
|
130 |
-
fn=
|
131 |
inputs=[task_dropdown, input_text_box],
|
132 |
outputs=output_display
|
133 |
)
|
@@ -140,8 +134,8 @@ def app_interface():
|
|
140 |
similarity_button = gr.Button("Compute Similarity")
|
141 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
142 |
similarity_button.click(
|
143 |
-
fn=
|
144 |
-
inputs=[task_dropdown, sentence1_box, sentence2_box],
|
145 |
outputs=similarity_output
|
146 |
)
|
147 |
|
|
|
44 |
sequence_lengths = attention_mask.sum(dim=1) - 1
|
45 |
batch_size = last_hidden_states.shape[0]
|
46 |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
47 |
+
|
48 |
def clear_cuda_cache():
|
49 |
torch.cuda.empty_cache()
|
50 |
|
51 |
def free_memory(*args):
|
52 |
for arg in args:
|
53 |
del arg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
@spaces.GPU
|
56 |
+
def compute_embeddings(selected_task, input_text):
|
57 |
+
try:
|
58 |
+
task_description = tasks[selected_task]
|
59 |
+
except KeyError:
|
60 |
+
print(f"Selected task not found: {selected_task}")
|
61 |
+
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
62 |
+
max_length = 2042
|
63 |
+
processed_texts = [f'Instruct: {task_description}\nQuery: {input_text}']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
batch_dict = self.tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
66 |
+
batch_dict['input_ids'] = [input_ids + [self.tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
67 |
+
batch_dict = self.tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
68 |
+
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
69 |
+
outputs = self.model(**batch_dict)
|
70 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
71 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
72 |
+
embeddings_list = embeddings.detach().cpu().numpy().tolist()
|
73 |
+
return embeddings_list
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
def compute_similarity(self, selected_task, sentence1, sentence2, extra_sentence1, extra_sentence2):
|
77 |
+
try:
|
78 |
+
task_description = tasks[selected_task]
|
79 |
+
except KeyError:
|
80 |
+
print(f"Selected task not found: {selected_task}")
|
81 |
+
return f"Error: Task '{selected_task}' not found. Please select a valid task."
|
82 |
+
# Compute embeddings for each sentence
|
83 |
+
embeddings1 = self.compute_embeddings(self.selected_task, sentence1)
|
84 |
+
embeddings2 = self.compute_embeddings(self.selected_task, sentence2)
|
85 |
+
embeddings3 = self.compute_embeddings(self.selected_task, extra_sentence1)
|
86 |
+
embeddings4 = self.compute_embeddings(self.selected_task, extra_sentence2)
|
87 |
|
88 |
+
# Convert embeddings to tensors
|
89 |
+
embeddings_tensor1 = torch.tensor(embeddings1).to(device).half()
|
90 |
+
embeddings_tensor2 = torch.tensor(embeddings2).to(device).half()
|
91 |
+
embeddings_tensor3 = torch.tensor(embeddings3).to(device).half()
|
92 |
+
embeddings_tensor4 = torch.tensor(embeddings4).to(device).half()
|
93 |
+
|
94 |
+
# Compute cosine similarity
|
95 |
+
similarity1 = self._compute_cosine_similarity(embeddings1, embeddings2)
|
96 |
+
similarity2 = self._compute_cosine_similarity(embeddings1, embeddings3)
|
97 |
+
similarity3 = self._compute_cosine_similarity(embeddings1, embeddings4)
|
98 |
|
99 |
+
# Free memory
|
100 |
+
free_memory(embeddings1, embeddings2, embeddings3, embeddings4)
|
101 |
|
102 |
+
return similarity1, similarity2, similarity3
|
103 |
+
|
104 |
+
@spaces.GPU
|
105 |
+
def _compute_cosine_similarity(emb1, emb2):
|
106 |
+
tensor1 = torch.tensor(emb1).to(device).half()
|
107 |
+
tensor2 = torch.tensor(emb2).to(device).half()
|
108 |
+
similarity = F.cosine_similarity(tensor1, tensor2).item()
|
109 |
+
free_memory(tensor1, tensor2)
|
110 |
+
return similarity
|
111 |
|
|
|
112 |
def app_interface():
|
|
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown(title)
|
115 |
gr.Markdown(description)
|
|
|
121 |
compute_button = gr.Button("Try🐣🛌🏻e5")
|
122 |
output_display = gr.Textbox(label="🐣e5-mistral🛌🏻 Embeddings")
|
123 |
compute_button.click(
|
124 |
+
fn=compute_embeddings,
|
125 |
inputs=[task_dropdown, input_text_box],
|
126 |
outputs=output_display
|
127 |
)
|
|
|
134 |
similarity_button = gr.Button("Compute Similarity")
|
135 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
136 |
similarity_button.click(
|
137 |
+
fn=compute_similarity,
|
138 |
+
inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
|
139 |
outputs=similarity_output
|
140 |
)
|
141 |
|