File size: 7,380 Bytes
75660bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pandas as pd
import lib.utils as libPaths
import lib.claims as libClaims

from lib.models import mdl_utils, mdl_xgb, mdl_logR, mdl_svm
from lib.models import mdl_autoenc, mdl_kmeans
import sys

m_blnTraceOn = True
m_blnTrace2On = False

#--- load, merge data from file
m_kstrDataPath = libPaths.pth_data
m_kstrModelPath = libPaths.pth_model
m_kstrBinModelPath = libPaths.pth_binModels



def load_providers(blnIsTrain=False):

    pdfClaims = libClaims.loadPkl_claims(blnIsTrain)
    pdfClaims = pdfClaims.drop(['ClmProcedureCode_1', 'ClmProcedureCode_2', 'ClmProcedureCode_3', 
                            'ClmProcedureCode_4', 'ClmProcedureCode_5', 'ClmProcedureCode_6',
                            'Gender', 'Race', 'County'], axis=1)
    pdfProviders = pdfClaims.groupby(['Provider'], as_index=False).agg('sum')
    return pdfProviders


#--- feat eng
def do_featEng(pdfClaimsFeatEng, blnIsTrain=False):
    if (m_blnTraceOn): print("TRACE (providers.doFeatEng):  blnIsTrain, ", blnIsTrain)
    pdfFeatEng = pdfClaimsFeatEng

    #--- add new features to assist with predictions
    pdfFeatEng['InscClaimReimbursement_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['InscClaimAmtReimbursed'].transform('mean') 
    pdfFeatEng['DeductibleAmtPaid_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['DeductibleAmtPaid'].transform('mean')
    
    pdfFeatEng['IPAnnualReimbursementAmt_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['IPAnnualReimbursementAmt'].transform('mean')
    pdfFeatEng['IPAnnualDeductibleAmt_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['IPAnnualDeductibleAmt'].transform('mean')

    pdfFeatEng['OPAnnualReimbursementAmt_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['OPAnnualReimbursementAmt'].transform('mean')
    pdfFeatEng['OPAnnualDeductibleAmt_ProviderAvg'] = pdfFeatEng.groupby(['Provider'])['OPAnnualDeductibleAmt'].transform('mean')
    return pdfFeatEng



def get_logrPredict(pdfTestClaims):

    #--- logistic regression predictions;  load test data
    pdfClaims = pdfTestClaims
    #print("INFO (providers.get_logrPredict)  pdfClaims.shape):  ", pdfClaims.shape)

    pdfFeatEng = do_featEng(pdfClaims, False)
    npaScaled = mdl_utils.doProviders_stdScaler(pdfFeatEng, False)
    pdfScaled = mdl_utils.doProviders_stdScaler_toPdf(npaScaled)
    #print("INFO (predict.npaScaled.shape):  ", npaScaled.shape)

    ndaPredict = mdl_logR.predict(npaScaled)
    #print("INFO (predict.npaPredict.shape):  ", ndaPredict.shape)

    pdfPredict = pd.DataFrame(ndaPredict)
    #print("INFO (predict.pdfPredict.shape):  ", pdfPredict.shape)

    #--- stitch the grouped data with the labels
    pdfResults = pdfFeatEng.groupby(['Provider'], as_index=False).agg('sum')
    #print("INFO (predict.pdfGrpFeatEng.shape):  ", pdfResults.shape)

    pdfResults.insert(0, "hasAnom?", pdfPredict[0])
    return pdfResults    


def get_svmPredict(pdfTestClaims):

    #--- support vector machine predictions;  load test data
    pdfClaims = pdfTestClaims
    if (m_blnTraceOn):  print("TRACE (providers.get_svmPredict) pdfClaims.shape:  ", pdfClaims.shape)

    pdfFeatEng = do_featEng(pdfClaims, False)
    npaScaled = mdl_utils.doProviders_stdScaler(pdfFeatEng, False)
    pdfScaled = mdl_utils.doProviders_stdScaler_toPdf(npaScaled)
    if (m_blnTraceOn):  print("TRACE (providers.get_svmPredict) npaScaled.shape:  ", npaScaled.shape)

    ndaPredict = mdl_svm.predict(npaScaled)
    if (m_blnTraceOn):  print("TRACE (providers.get_svmPredict) npaPredict.shape:  ", ndaPredict.shape)

    pdfPredict = pd.DataFrame(ndaPredict)
    if (m_blnTraceOn):  print("TRACE (providers.get_svmPredict) pdfPredict.shape:  ", pdfPredict.shape)

    #--- stitch the grouped data with the labels
    pdfResults = pdfFeatEng.groupby(['Provider'], as_index=False).agg('sum')
    if (m_blnTraceOn):  print("TRACE (providers.get_svmPredict) pdfResults.shape:  ", pdfResults.shape)

    pdfResults.insert(0, "hasAnom?", pdfPredict[0])
    return pdfResults    



def get_xgbPredict(pdfTestClaims):

    try:
        #--- load test data
        pdfClaims = pdfTestClaims
        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict)  pdfClaims.shape):  ", pdfClaims.shape)

        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) doFeatEng (provider) ... ")
        pdfFeatEng = do_featEng(pdfClaims, False)

        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) doStdScaler ... ")
        npaScaled = mdl_utils.doProviders_stdScaler(pdfFeatEng, False)

        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) doStdScaler_toPdf ... ")
        pdfScaled = mdl_utils.doProviders_stdScaler_toPdf(npaScaled)
        #if (m_blnTraceOn):  print("TRACE (predict.npaScaled.shape1):  ", npaScaled.shape)

        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) run prediction ... ")
        ndaPredict = mdl_xgb.predict(npaScaled)
        #if (m_blnTraceOn):  print("TRACE (predict.npaPredict.shape2):  ", ndaPredict.shape)

        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) convert to dataframe ... ")
        pdfPredict = pd.DataFrame(ndaPredict)
        pdfAnoms = pdfPredict[pdfPredict[0] > 0]
        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) pdfPredict.shape:  ", pdfPredict.shape)
        if (m_blnTraceOn):  print("TRACE (providers.get_xgbPredict) #anoms:  ", len(pdfAnoms.index))

        #--- group data by provider
        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) group claims by provider ... ")
        pdfResults = pdfFeatEng.groupby(['Provider'], as_index=False).agg('sum')
        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) pdfResults.shape:  ", pdfResults.shape)

        #--- stitch the grouped data with the labels
        if (m_blnTrace2On):  print("TRACE (providers.get_xgbPredict) merge labels into dataset ... ")
        pdfResults.insert(0, "hasAnom?", pdfPredict[0])

    except:
        e = sys.exc_info()
        print("ERROR (providers.get_xgbPredict_genError):  ", e)  
    
    
    if (m_blnTraceOn):  print("TRACE (providers.get_xgbPredict) proc complete; return ... ")
    return pdfResults



def get_encPredict(pdfTestClaims):

    #--- principal component analysis predictions;  load test data
    pdfClaims = pdfTestClaims
    if (m_blnTraceOn):  print("TRACE (providers.get_encPredict) ppdfClaims.shape:  ", pdfClaims.shape)

    pdfFeatEng = do_featEng(pdfClaims, False)                           #--- not grouped by provider
    

    #--- perform standard scaling; get fit then transform                      
    npaScaled = mdl_utils.doProviders_stdScaler(pdfFeatEng, False)               #--- grouped by provider
    pdfScaled = mdl_utils.doProviders_stdScaler_toPdf(npaScaled)
    #print("INFO (predict.npaScaled.shape):  ", npaScaled.shape)

    #--- perform PCA; then autoencode predict
    ndaPredict = mdl_autoenc.predict(pdfScaled)
    #print("INFO (predict.npaPredict.shape):  ", ndaPredict.shape)

    pdfPredict = pd.DataFrame(ndaPredict)
    #print("INFO (predict.pdfPredict.shape):  ", pdfPredict.shape)

    #--- stitch the grouped data with the labels
    pdfResults = pdfFeatEng.groupby(['Provider'], as_index=False).agg('sum')
    #print("INFO (predict.pdfGrpFeatEng.shape):  ", pdfResults.shape)

    pdfResults.insert(0, "hasAnom?", pdfPredict[0])
    return pdfResults