import gradio as gr import torch from PIL import Image # Images torch.hub.download_url_to_file('https://storage.googleapis.com/kili-datasets-public/plastic-in-river/samples/ckze0btj10ejf0lyy1imtdy7o.jpg', 'bottles1.jpg') torch.hub.download_url_to_file('https://storage.googleapis.com/kili-datasets-public/plastic-in-river/samples/ckze0btj10ejd0lyyfzm85k9u.jpg', 'bottles2.jpg') # Model model = torch.hub.load('PierreLeveau/yolov5', 'custom', 'https://storage.googleapis.com/kili-datasets-public/plastic-in-river/model/v3/best.pt') # force_reload=True to update def yolo(im, size=640): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.imgs[0]) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "YOLOv5 - Plastic in river detection" description = "This space demontrates a YOLOv5 model fine-tuned on a dataset of annotated photos of plastic waste in rivers. Upload an image or click an example image to use." article = "

YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset. We performed fine-tuning of models trained by Ultralytics with the help of their awesome code repository. The data comes from a community challenge organized by [Kili](https://kili-technology.com/blog/kili-s-community-challenge-plastic-in-river-dataset), and the demo site is heavily inspired from the original [YoloV5 space](https://huggingface.co/spaces/akhaliq/YOLOv5). We will update the model during the challenge." examples = [['bottles1.jpg'], ['bottles2.jpg']] gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch( debug=True)