File size: 5,627 Bytes
38d999c 23672df 252a2d4 38d999c b0d997e 713b4c4 b0d997e 38d999c 713b4c4 0afc4d0 713b4c4 38d999c 954384c 713b4c4 954384c 38d999c 252a2d4 38d999c 252a2d4 38d999c 945af81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from annotated_text import annotated_text
from bs4 import BeautifulSoup
from gramformer import Gramformer
import streamlit as st
import pandas as pd
import torch
import math
import re
import os
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(1212)
def loadEnModel():
os.system("python3 -m spacy download en_core_web_sm")
st.session_state['models_loaded'] = True
class GramformerDemo:
def __init__(self):
if 'models_loaded' not in st.session_state:
st.session_state['models_loaded'] = False
st.set_page_config(
page_title="Gramformer Demo",
initial_sidebar_state="expanded",
layout="wide"
)
self.model_map = {
'Corrector': 1,
'Detector - coming soon': 2
}
self.examples = [
"what be the reason for everyone leave the comapny",
"He are moving here.",
"I am doing fine. How is you?",
"How is they?",
"Matt like fish",
"the collection of letters was original used by the ancient Romans",
"We enjoys horror movies",
"Anna and Mike is going skiing",
"I walk to the store and I bought milk",
" We all eat the fish and then made dessert",
"I will eat fish for dinner and drink milk",
]
@st.cache(show_spinner=False, suppress_st_warning=True, allow_output_mutation=True)
def load_gf(self, model: int):
"""
Load Gramformer model
"""
gf = Gramformer(models=model, use_gpu=False)
return gf
def show_highlights(self, gf: object, input_text: str, corrected_sentence: str):
"""
To show highlights
"""
try:
strikeout = lambda x: '\u0336'.join(x) + '\u0336'
highlight_text = gf.highlight(input_text, corrected_sentence)
color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
annotations = []
for token in tokens:
soup = BeautifulSoup(token, 'html.parser')
tags = soup.findAll()
if tags:
_tag = tags[0].name
_type = tags[0]['type']
_text = tags[0]['edit']
_color = color_map[_tag]
if _tag == 'd':
_text = strikeout(tags[0].text)
annotations.append((_text, _type, _color))
else:
annotations.append(token)
args = {
'height': 45*(math.ceil(len(highlight_text)/100)),
'scrolling': True
}
annotated_text(*annotations, **args)
except Exception as e:
st.error('Some error occured!')
st.stop()
def show_edits(self, gf: object, input_text: str, corrected_sentence: str):
"""
To show edits
"""
try:
edits = gf.get_edits(input_text, corrected_sentence)
df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
df = df.set_index('type')
st.table(df)
except Exception as e:
st.error('Some error occured!')
st.stop()
def main(self):
github_repo = 'https://github.com/PrithivirajDamodaran/Gramformer'
st.title("Gramformer")
st.write(f'GitHub Link - [{github_repo}]({github_repo})')
st.markdown('A framework for detecting, highlighting and correcting grammatical errors on natural language text')
model_type = st.sidebar.selectbox(
label='Choose Model',
options=list(self.model_map.keys())
)
if model_type == 'Corrector':
max_candidates = st.sidebar.number_input(
label='Max candidates',
min_value=1,
max_value=10,
value=1
)
else:
# NOTE:
st.warning('TO BE IMPLEMENTED !!')
st.stop()
with st.spinner('Loading model..'):
if not st.session_state['models_loaded']:
loadEnModel()
gf = self.load_gf(self.model_map[model_type])
input_text = st.selectbox(
label="Choose an example",
options=self.examples
)
input_text = st.text_input(
label="Input text",
value=input_text
)
if input_text.strip():
results = gf.correct(input_text, max_candidates=max_candidates)
corrected_sentence, score = results[0]
st.markdown(f'#### Output:')
st.write('')
st.success(corrected_sentence)
exp1 = st.expander(label='Show highlights', expanded=True)
with exp1:
self.show_highlights(gf, input_text, corrected_sentence)
exp2 = st.expander(label='Show edits')
with exp2:
self.show_edits(gf, input_text, corrected_sentence)
else:
st.warning("Please select/enter text to proceed")
if __name__ == "__main__":
obj = GramformerDemo()
obj.main()
|