|
from annotated_text import annotated_text
|
|
from bs4 import BeautifulSoup
|
|
from gramformer import Gramformer
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import torch
|
|
import math
|
|
import re
|
|
import os
|
|
|
|
def set_seed(seed):
|
|
torch.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(seed)
|
|
set_seed(1212)
|
|
|
|
def loadEnModel():
|
|
os.system("python3 -m spacy download en_core_web_sm")
|
|
st.session_state['models_loaded'] = True
|
|
|
|
class GramformerDemo:
|
|
|
|
def __init__(self):
|
|
if 'gf' not in st.session_state:
|
|
st.session_state['gf'] = None
|
|
|
|
st.set_page_config(
|
|
page_title="Gramformer Demo",
|
|
initial_sidebar_state="expanded",
|
|
layout="wide"
|
|
)
|
|
self.model_map = {
|
|
'Corrector': 1,
|
|
'Detector - coming soon': 2
|
|
}
|
|
self.examples = [
|
|
"what be the reason for everyone leave the comapny",
|
|
"He are moving here.",
|
|
"I am doing fine. How is you?",
|
|
"How is they?",
|
|
"Matt like fish",
|
|
"the collection of letters was original used by the ancient Romans",
|
|
"We enjoys horror movies",
|
|
"Anna and Mike is going skiing",
|
|
"I walk to the store and I bought milk",
|
|
" We all eat the fish and then made dessert",
|
|
"I will eat fish for dinner and drink milk",
|
|
]
|
|
|
|
@st.cache(show_spinner=False, suppress_st_warning=True, allow_output_mutation=True)
|
|
def load_gf(self, model: int):
|
|
"""
|
|
Load Gramformer model
|
|
"""
|
|
gf = Gramformer(models=model, use_gpu=False)
|
|
return gf
|
|
|
|
def show_highlights(self, gf: object, input_text: str, corrected_sentence: str):
|
|
"""
|
|
To show highlights
|
|
"""
|
|
try:
|
|
strikeout = lambda x: '\u0336'.join(x) + '\u0336'
|
|
highlight_text = gf.highlight(input_text, corrected_sentence)
|
|
color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
|
|
tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
|
|
annotations = []
|
|
for token in tokens:
|
|
soup = BeautifulSoup(token, 'html.parser')
|
|
tags = soup.findAll()
|
|
if tags:
|
|
_tag = tags[0].name
|
|
_type = tags[0]['type']
|
|
_text = tags[0]['edit']
|
|
_color = color_map[_tag]
|
|
|
|
if _tag == 'd':
|
|
_text = strikeout(tags[0].text)
|
|
|
|
annotations.append((_text, _type, _color))
|
|
else:
|
|
annotations.append(token)
|
|
args = {
|
|
'height': 45*(math.ceil(len(highlight_text)/100)),
|
|
'scrolling': True
|
|
}
|
|
annotated_text(*annotations, **args)
|
|
except Exception as e:
|
|
st.error('Some error occured!')
|
|
st.stop()
|
|
|
|
def show_edits(self, gf: object, input_text: str, corrected_sentence: str):
|
|
"""
|
|
To show edits
|
|
"""
|
|
try:
|
|
edits = gf.get_edits(input_text, corrected_sentence)
|
|
df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
|
|
df = df.set_index('type')
|
|
st.table(df)
|
|
except Exception as e:
|
|
st.error('Some error occured!')
|
|
st.stop()
|
|
|
|
def main(self):
|
|
github_repo = 'https://github.com/PrithivirajDamodaran/Gramformer'
|
|
st.title("Gramformer")
|
|
st.write(f'GitHub Link - [{github_repo}]({github_repo})')
|
|
st.markdown('A framework for detecting, highlighting and correcting grammatical errors on natural language text')
|
|
|
|
model_type = st.sidebar.selectbox(
|
|
label='Choose Model',
|
|
options=list(self.model_map.keys())
|
|
)
|
|
if model_type == 'Corrector':
|
|
max_candidates = st.sidebar.number_input(
|
|
label='Max candidates',
|
|
min_value=1,
|
|
max_value=10,
|
|
value=1
|
|
)
|
|
else:
|
|
|
|
st.warning('TO BE IMPLEMENTED !!')
|
|
st.stop()
|
|
|
|
if not st.session_state['gf']:
|
|
with st.spinner('Loading model..'):
|
|
loadEnModel()
|
|
gf = self.load_gf(self.model_map[model_type])
|
|
st.session_state['gf'] = gf
|
|
else:
|
|
gf = st.session_state['gf']
|
|
|
|
input_text = st.selectbox(
|
|
label="Choose an example",
|
|
options=self.examples
|
|
)
|
|
input_text = st.text_input(
|
|
label="Input text",
|
|
value=input_text
|
|
)
|
|
|
|
if input_text.strip():
|
|
results = gf.correct(input_text, max_candidates=max_candidates)
|
|
corrected_sentence, score = results[0]
|
|
st.markdown(f'#### Output:')
|
|
st.write('')
|
|
st.success(corrected_sentence)
|
|
exp1 = st.expander(label='Show highlights', expanded=True)
|
|
with exp1:
|
|
self.show_highlights(gf, input_text, corrected_sentence)
|
|
exp2 = st.expander(label='Show edits')
|
|
with exp2:
|
|
self.show_edits(gf, input_text, corrected_sentence)
|
|
|
|
else:
|
|
st.warning("Please select/enter text to proceed")
|
|
|
|
if __name__ == "__main__":
|
|
obj = GramformerDemo()
|
|
obj.main()
|
|
|