kinensake commited on
Commit
2ea9ced
·
1 Parent(s): 75a044a

Modify: requirements.txt

Browse files
lm_scorer/__init__.py ADDED
File without changes
lm_scorer/bin/__init__.py ADDED
File without changes
lm_scorer/bin/cli.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
4
+
5
+ import argparse
6
+ import itertools
7
+ import os
8
+ import sys
9
+
10
+ import torch
11
+
12
+ from ..models.auto import AutoLMScorer as LMScorer
13
+
14
+
15
+ def parse_args() -> argparse.Namespace:
16
+ parser = argparse.ArgumentParser(
17
+ description="Get sentences probability using a language model.",
18
+ )
19
+ parser.add_argument(
20
+ "sentences_file_path",
21
+ metavar="sentences-file-path",
22
+ type=str,
23
+ help="A file containing sentences to score, one per line."
24
+ " If - is given as filename it reads from stdin instead.",
25
+ )
26
+ parser.add_argument(
27
+ "--model-name",
28
+ "-m",
29
+ type=str,
30
+ default="gpt2",
31
+ help="The pretrained language model to use. Can be one of: %s."
32
+ % ", ".join(LMScorer.supported_model_names()),
33
+ )
34
+ parser.add_argument(
35
+ "--tokens",
36
+ "-t",
37
+ action="store_true",
38
+ help="If provided it provides the probability of each token of each sentence.",
39
+ )
40
+ parser.add_argument(
41
+ "--log-prob",
42
+ "-lp",
43
+ action="store_true",
44
+ help="If provided log probabilities are returned instead.",
45
+ )
46
+ parser.add_argument(
47
+ "--reduce",
48
+ "-r",
49
+ type=str,
50
+ default="prod",
51
+ help="Reduce strategy applied on token probabilities to get the sentence score."
52
+ " Available strategies are: prod, mean, gmean, hmean.",
53
+ )
54
+ parser.add_argument(
55
+ "--batch-size",
56
+ "-b",
57
+ type=int,
58
+ default=1,
59
+ help="Number of sentences to process in parallel.",
60
+ )
61
+ parser.add_argument(
62
+ "--significant-figures",
63
+ "-sf",
64
+ type=int,
65
+ default=5,
66
+ help="Number of significant figures to use when printing numbers.",
67
+ )
68
+ parser.add_argument(
69
+ "--cuda",
70
+ type=int,
71
+ default=-1,
72
+ help="If provided it runs the model on the given cuda device.",
73
+ )
74
+ parser.add_argument(
75
+ "--debug",
76
+ action="store_true",
77
+ help="If provided it provides additional logging in case of errors.",
78
+ )
79
+ return parser.parse_args()
80
+
81
+
82
+ def normalize_args(args: argparse.Namespace) -> None:
83
+ if args.sentences_file_path != "-":
84
+ args.sentences_file_path = os.path.realpath(args.sentences_file_path)
85
+
86
+
87
+ def validate_args(args: argparse.Namespace) -> None:
88
+ if args.sentences_file_path != "-":
89
+ if not os.path.isfile(args.sentences_file_path):
90
+ raise ValueError("The provided sentences file path is invalid.")
91
+
92
+ if args.cuda >= 0 and not torch.cuda.is_available():
93
+ raise ValueError("No Cuda device found.")
94
+
95
+ if args.cuda >= torch.cuda.device_count():
96
+ device_count = torch.cuda.device_count()
97
+ raise ValueError("Invalid Cuda device: %d/%d." % (args.cuda, device_count))
98
+
99
+ if args.batch_size <= 0:
100
+ raise ValueError("The batch size must be positive.")
101
+
102
+ if args.significant_figures <= 0:
103
+ raise ValueError("The number of significant figures must be positive.")
104
+
105
+
106
+ T1 = TypeVar("T1") # pylint: disable=invalid-name
107
+
108
+
109
+ def grouper(iterable: Iterable[T1], size: int) -> Generator[List[T1], None, None]:
110
+ it = iter(iterable) # pylint: disable=invalid-name
111
+ while True:
112
+ chunk = list(itertools.islice(it, size))
113
+ if not chunk:
114
+ return
115
+ yield chunk
116
+
117
+
118
+ def main(args: argparse.Namespace) -> None:
119
+ # pylint: disable=too-many-locals
120
+ if args.sentences_file_path == "-":
121
+ sentences_stream = sys.stdin
122
+ else:
123
+ sentences_stream = open(args.sentences_file_path, "r")
124
+
125
+ sig_fig = args.significant_figures
126
+ batch_size = args.batch_size
127
+ device = torch.device("cuda:%d" % args.cuda if args.cuda >= 0 else "cpu")
128
+ scorer = LMScorer.from_pretrained(
129
+ args.model_name, device=device, batch_size=batch_size
130
+ )
131
+
132
+ buffer_size = args.batch_size * 2
133
+ for sentences in grouper(sentences_stream, buffer_size):
134
+ sentences = [sentence.strip() for sentence in sentences]
135
+
136
+ sent_scores = scorer.sentence_score(
137
+ sentences, log=args.log_prob, reduce=args.reduce
138
+ )
139
+ if args.tokens:
140
+ sent_info = scorer.tokens_score(sentences, log=args.log_prob)
141
+
142
+ sent_num = len(sentences)
143
+ for i in range(sent_num):
144
+ sentence, sent_score = sentences[i], sent_scores[i]
145
+ print(f"%s\t%.{sig_fig}g" % (sentence, sent_score))
146
+ if args.tokens:
147
+ scores, _, tokens = sent_info[i]
148
+ for score, token in zip(scores, tokens):
149
+ print(f"%s\t%.{sig_fig}g" % (token, score))
150
+ print("")
151
+
152
+ if args.sentences_file_path != "-":
153
+ sentences_stream.close()
154
+
155
+
156
+ def run() -> None:
157
+ try:
158
+ args = parse_args()
159
+
160
+ normalize_args(args)
161
+ validate_args(args)
162
+ main(args)
163
+ except KeyboardInterrupt:
164
+ print("\nAborted!")
165
+ except Exception as err: # pylint: disable=broad-except
166
+ if args.debug:
167
+ raise
168
+ print("Error: %s" % err)
169
+
170
+
171
+ if __name__ == "__main__":
172
+ run()
lm_scorer/models/__init__.py ADDED
File without changes
lm_scorer/models/abc/__init__.py ADDED
File without changes
lm_scorer/models/abc/base.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
2
+ from abc import ABC, abstractmethod
3
+
4
+ import math
5
+
6
+ import torch
7
+
8
+
9
+ class LMScorer(ABC):
10
+ def __init__(self, model_name: str, **kwargs: Any) -> None:
11
+ self._build(model_name, kwargs)
12
+
13
+ @overload
14
+ def sentence_score(
15
+ self, text: str, log: bool = False, reduce: str = "prod"
16
+ ) -> float:
17
+ ...
18
+
19
+ @overload
20
+ def sentence_score(
21
+ self, text: List[str], log: bool = False, reduce: str = "prod"
22
+ ) -> List[float]:
23
+ ...
24
+
25
+ def sentence_score(
26
+ self, text: Union[str, List[str]], log: bool = False, reduce: str = "prod",
27
+ ) -> Union[float, List[float]]:
28
+ sentences = [text] if isinstance(text, str) else text
29
+ scores: List[float] = []
30
+ if len(sentences) == 0:
31
+ return scores
32
+
33
+ outputs = self._tokens_log_prob(sentences)
34
+ for output in outputs:
35
+ log_probs = output[0]
36
+ tlen = log_probs.shape[0]
37
+
38
+ if reduce == "prod":
39
+ score = log_probs.sum()
40
+ elif reduce == "mean":
41
+ score = log_probs.logsumexp(0) - math.log(tlen)
42
+ elif reduce == "gmean":
43
+ score = log_probs.mean(0)
44
+ elif reduce == "hmean":
45
+ score = log_probs.neg().logsumexp(0).neg() + math.log(tlen)
46
+ else:
47
+ raise ValueError("Unrecognized scoring strategy: %s" % reduce)
48
+ if not log:
49
+ score = score.exp()
50
+
51
+ scores.append(score.item())
52
+
53
+ return scores[0] if isinstance(text, str) else scores
54
+
55
+ @overload
56
+ def tokens_score(
57
+ self, text: str, log: bool = False
58
+ ) -> Tuple[List[float], List[int], List[str]]:
59
+ ...
60
+
61
+ @overload
62
+ def tokens_score(
63
+ self, text: List[str], log: bool = False
64
+ ) -> List[Tuple[List[float], List[int], List[str]]]:
65
+ ...
66
+
67
+ def tokens_score(
68
+ self, text: Union[str, List[str]], log: bool = False
69
+ ) -> Union[
70
+ Tuple[List[float], List[int], List[str]],
71
+ List[Tuple[List[float], List[int], List[str]]],
72
+ ]:
73
+ sentences = [text] if isinstance(text, str) else text
74
+ outputs: List[Tuple[List[float], List[int], List[str]]] = []
75
+ if len(sentences) == 0:
76
+ return outputs
77
+
78
+ for log_probs, ids, tokens in self._tokens_log_prob(sentences):
79
+ scores = log_probs if log else log_probs.exp()
80
+ scores = cast(torch.DoubleTensor, scores)
81
+ output = (scores.tolist(), ids.tolist(), tokens)
82
+ outputs.append(output)
83
+
84
+ return outputs[0] if isinstance(text, str) else outputs
85
+
86
+ @classmethod
87
+ def supported_model_names(cls) -> Iterable[str]:
88
+ return cls._supported_model_names()
89
+
90
+ def _build(self, model_name: str, options: Dict[str, Any]) -> None:
91
+ # pylint: disable=attribute-defined-outside-init, unused-argument
92
+ self.model_name = model_name
93
+
94
+ @abstractmethod
95
+ def _tokens_log_prob(
96
+ self, text: List[str]
97
+ ) -> List[Tuple[torch.DoubleTensor, torch.LongTensor, List[str]]]:
98
+ ... # pragma: no cover
99
+
100
+ @classmethod
101
+ @abstractmethod
102
+ def _supported_model_names(cls) -> Iterable[str]:
103
+ ... # pragma: no cover
lm_scorer/models/abc/batch.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pylint: disable=abstract-method
2
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
3
+ from abc import abstractmethod
4
+
5
+ import torch
6
+
7
+ from .base import LMScorer
8
+
9
+
10
+ class BatchedLMScorer(LMScorer):
11
+ # @overrides
12
+ def _build(self, model_name: str, options: Dict[str, Any]) -> None:
13
+ super()._build(model_name, options)
14
+
15
+ batch_size = options.get("batch_size", 1)
16
+ if batch_size < 1:
17
+ raise ValueError("The batch_size option must be positive")
18
+ # pylint: disable=attribute-defined-outside-init
19
+ self.batch_size = batch_size
20
+
21
+ # @overrides
22
+ def _tokens_log_prob(
23
+ self, text: List[str]
24
+ ) -> List[Tuple[torch.DoubleTensor, torch.LongTensor, List[str]]]:
25
+ outputs = []
26
+ for i in range(0, len(text), self.batch_size):
27
+ batch = text[i : i + self.batch_size]
28
+ outputs.extend(self._tokens_log_prob_for_batch(batch))
29
+ return outputs
30
+
31
+ @abstractmethod
32
+ def _tokens_log_prob_for_batch(
33
+ self, text: List[str]
34
+ ) -> List[Tuple[torch.DoubleTensor, torch.LongTensor, List[str]]]:
35
+ ... # pragma: no cover
lm_scorer/models/abc/transformers.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pylint: disable=abstract-method
2
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
3
+
4
+ import os
5
+
6
+ from .batch import BatchedLMScorer
7
+
8
+
9
+ class TransformersLMScorer(BatchedLMScorer):
10
+ # @overrides
11
+ def _build(self, model_name: str, options: Dict[str, Any]) -> None:
12
+ super()._build(model_name, options)
13
+
14
+ #  Make transformers cache path configurable.
15
+ cache_dir = os.environ.get("TRANSFORMERS_CACHE_DIR", ".transformers_cache")
16
+ options["cache_dir"] = options.get("cache_dir", cache_dir)
lm_scorer/models/auto.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
2
+
3
+ import itertools
4
+
5
+ from .abc.base import LMScorer
6
+ from .gpt2 import GPT2LMScorer
7
+
8
+
9
+ class AutoLMScorer:
10
+ MODEL_CLASSES = [GPT2LMScorer]
11
+
12
+ def __init__(self):
13
+ raise EnvironmentError(
14
+ "AutoLMscorer is designed to be instantiated "
15
+ "using the `AutoLMscorer.from_pretrained(model_name)`"
16
+ "method"
17
+ )
18
+
19
+ @classmethod
20
+ def from_pretrained(cls, model_name: str, **kwargs: Any) -> LMScorer:
21
+ for model_class in cls.MODEL_CLASSES:
22
+ if model_name not in model_class.supported_model_names():
23
+ continue
24
+ return model_class(model_name, **kwargs)
25
+ raise ValueError(
26
+ "Unrecognized model name."
27
+ "Can be one of: %s" % ", ".join(cls.supported_model_names()),
28
+ )
29
+
30
+ @classmethod
31
+ def supported_model_names(cls) -> Iterable[str]:
32
+ classes = cls.MODEL_CLASSES
33
+ models = map(lambda c: c.supported_model_names(), classes)
34
+ return itertools.chain.from_iterable(models)
lm_scorer/models/gpt2.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import * # pylint: disable=wildcard-import,unused-wildcard-import
2
+
3
+
4
+ import torch
5
+ from transformers import AutoTokenizer, GPT2LMHeadModel
6
+ from transformers import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
7
+ from transformers.tokenization_utils import BatchEncoding
8
+
9
+ from .abc.transformers import TransformersLMScorer
10
+
11
+
12
+ class GPT2LMScorer(TransformersLMScorer):
13
+ # @overrides
14
+ def _build(self, model_name: str, options: Dict[str, Any]) -> None:
15
+ super()._build(model_name, options)
16
+
17
+ # pylint: disable=attribute-defined-outside-init
18
+ self.tokenizer = AutoTokenizer.from_pretrained(
19
+ model_name, use_fast=True, add_special_tokens=False
20
+ )
21
+ # Add the pad token to GPT2 dictionary.
22
+ # len(tokenizer) = vocab_size + 1
23
+ self.tokenizer.add_special_tokens({"additional_special_tokens": ["<|pad|>"]})
24
+ self.tokenizer.pad_token = "<|pad|>"
25
+
26
+ self.model = GPT2LMHeadModel.from_pretrained(model_name)
27
+ # We need to resize the embedding layer because we added the pad token.
28
+ self.model.resize_token_embeddings(len(self.tokenizer))
29
+ self.model.eval()
30
+ if "device" in options:
31
+ self.model.to(options["device"])
32
+
33
+ def _add_special_tokens(self, text: str) -> str:
34
+ return self.tokenizer.bos_token + text + self.tokenizer.eos_token
35
+
36
+ # @overrides
37
+ def _tokens_log_prob_for_batch(
38
+ self, text: List[str]
39
+ ) -> List[Tuple[torch.DoubleTensor, torch.LongTensor, List[str]]]:
40
+ outputs: List[Tuple[torch.DoubleTensor, torch.LongTensor, List[str]]] = []
41
+ if len(text) == 0:
42
+ return outputs
43
+
44
+ # TODO: Handle overflowing elements for long sentences
45
+ text = list(map(self._add_special_tokens, text))
46
+ encoding: BatchEncoding = self.tokenizer.batch_encode_plus(
47
+ text, return_tensors="pt",
48
+ )
49
+ with torch.no_grad():
50
+ ids = encoding["input_ids"].to(self.model.device)
51
+ attention_mask = encoding["attention_mask"].to(self.model.device)
52
+ nopad_mask = ids != self.tokenizer.pad_token_id
53
+ logits: torch.Tensor = self.model(ids, attention_mask=attention_mask)[0]
54
+
55
+ for sent_index in range(len(text)):
56
+ sent_nopad_mask = nopad_mask[sent_index]
57
+ # len(tokens) = len(text[sent_index]) + 1
58
+ sent_tokens = [
59
+ tok
60
+ for i, tok in enumerate(encoding.tokens(sent_index))
61
+ if sent_nopad_mask[i] and i != 0
62
+ ]
63
+
64
+ # sent_ids.shape = [len(text[sent_index]) + 1]
65
+ sent_ids = ids[sent_index, sent_nopad_mask][1:]
66
+ # logits.shape = [len(text[sent_index]) + 1, vocab_size]
67
+ sent_logits = logits[sent_index, sent_nopad_mask][:-1, :]
68
+ sent_logits[:, self.tokenizer.pad_token_id] = float("-inf")
69
+ # ids_scores.shape = [seq_len + 1]
70
+ sent_ids_scores = sent_logits.gather(1, sent_ids.unsqueeze(1)).squeeze(1)
71
+ # log_prob.shape = [seq_len + 1]
72
+ sent_log_probs = sent_ids_scores - sent_logits.logsumexp(1)
73
+
74
+ sent_log_probs = cast(torch.DoubleTensor, sent_log_probs)
75
+ sent_ids = cast(torch.LongTensor, sent_ids)
76
+
77
+ output = (sent_log_probs, sent_ids, sent_tokens)
78
+ outputs.append(output)
79
+
80
+ return outputs
81
+
82
+ # @overrides
83
+ @classmethod
84
+ def _supported_model_names(cls) -> Iterable[str]:
85
+ return GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys()
requirements.txt CHANGED
@@ -6,5 +6,4 @@ python-Levenshtein==0.12.2
6
  fuzzywuzzy==0.18.0
7
  tokenizers==0.10.2
8
  fsspec==2021.5.0
9
- lm-scorer==0.4.2 --install-option='--ignore-requires-python'
10
  errant
 
6
  fuzzywuzzy==0.18.0
7
  tokenizers==0.10.2
8
  fsspec==2021.5.0
 
9
  errant