Spaces:
Runtime error
Runtime error
File size: 2,990 Bytes
6d99346 5ee3d72 6d99346 5ee3d72 6d99346 5ee3d72 6d99346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import pandas as pd
from transformers import (
AutoModelForSeq2SeqLM,
AutoModelForTableQuestionAnswering,
AutoTokenizer,
pipeline,
)
model_tapex = "microsoft/tapex-large-finetuned-wtq"
tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
model_tapex = AutoModelForSeq2SeqLM.from_pretrained(model_tapex)
pipe_tapex = pipeline(
"table-question-answering", model=model_tapex, tokenizer=tokenizer_tapex
)
model_tapas = "google/tapas-large-finetuned-wtq"
tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas)
model_tapas = AutoModelForTableQuestionAnswering.from_pretrained(model_tapas)
pipe_tapas = pipeline(
"table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas
)
def process(query, file, correct_answer, rows=20):
table = pd.read_csv(file.name, header=0).astype(str)
table = table[:rows]
result_tapex = pipe_tapex(table=table, query=query)
result_tapas = pipe_tapas(table=table, query=query)
return result_tapex["answer"], result_tapas["answer"], correct_answer
# Inputs
query_text = gr.Text(label="")
input_file = gr.File(label="", type="file")
rows_slider = gr.Slider(label="")
# Output
answer_text_tapex = gr.Text(label="TAPEX answer")
answer_text_tapas = gr.Text(label="TAPAS answer")
# description = "This Space lets you ask questions on CSV documents with Microsoft [TAPEX-Large](https://huggingface.co/microsoft/tapex-large-finetuned-wtq) and Google [TAPAS-Large](https://huggingface.co/google/tapas-large-finetuned-wtq). \
# Both have been fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. \n\n\
# A sample file with football statistics is available in the repository: \n\n\
# * Which team has the most wins? Answer: Manchester City FC\n\
# * Which team has the most wins: Chelsea, Liverpool or Everton? Answer: Liverpool\n\
# * Which teams have scored less than 40 goals? Answer: Cardiff City FC, Fulham FC, Brighton & Hove Albion FC, Huddersfield Town FC\n\
# * What is the average number of wins? Answer: 16 (rounded)\n\n\
# You can also upload your own CSV file. Please note that maximum sequence length for both models is 1024 tokens, \
# so you may need to limit the number of rows in your CSV file. Chunking is not implemented yet."
description=""
iface = gr.Interface(
theme="huggingface",
description=description,
layout="vertical",
fn=process,
inputs=[query_text, input_file, rows_slider],
outputs=[answer_text_tapex, answer_text_tapas],
# examples=[
# ["Which team has the most wins?", "default_file.csv", 20],
# [
# "Which team has the most wins: Chelsea, Liverpool or Everton?",
# "default_file.csv",
# 20,
# ],
# ["Which teams have scored less than 40 goals?", "default_file.csv", 20],
# ["What is the average number of wins?", "default_file.csv", 20],
# ],
allow_flagging="never",
)
iface.launch()
|