Spaces:
Runtime error
Runtime error
File size: 6,692 Bytes
039aebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import argparse
import json
import os
import torch
from datasets import load_dataset
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DPRQuestionEncoder
from common import articles_to_paragraphs, kilt_wikipedia_columns
from common import kilt_wikipedia_paragraph_columns as columns
def eval_generate(args):
device = ("cuda" if torch.cuda.is_available() else "cpu")
question_tokenizer = AutoTokenizer.from_pretrained(args.question_encoder_name)
question_model = DPRQuestionEncoder.from_pretrained(args.question_encoder_name).to(device)
_ = question_model.eval()
eli5_tokenizer = AutoTokenizer.from_pretrained('vblagoje/bart_eli5')
eli5_model = AutoModelForSeq2SeqLM.from_pretrained('vblagoje/bart_eli5').to(device)
_ = eli5_model.eval()
min_snippet_length = 20
topk = 21
min_chars_per_passage = 200
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full")
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True,
remove_columns=kilt_wikipedia_columns,
batch_size=256,
cache_file_name=f"./data/wiki_kilt_paragraphs_full.arrow",
desc="Expanding wiki articles into paragraphs")
# use paragraphs that are not simple fragments or very short sentences
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(
lambda x: (x["end_character"] - x["start_character"]) > min_chars_per_passage)
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", args.index_file_name, device=0)
def embed_questions_for_retrieval(questions):
query = question_tokenizer(questions, max_length=128, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
q_reps = question_model(query["input_ids"].to(device),
query["attention_mask"].to(device)).pooler_output
return q_reps.cpu().numpy()
def query_index(question):
question_embedding = embed_questions_for_retrieval([question])
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk)
retrieved_examples = []
r = list(zip(wiki_passages[k] for k in columns))
for i in range(topk):
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])})
return retrieved_examples
def create_kilt_datapoint(q_id, query, answer, res_list):
# make a KILT data point
# see https://github.com/facebookresearch/KILT#kilt-data-format
provenance = [{
"wikipedia_id": r["wikipedia_id"], # *mandatory*
"title": r["title"],
"section": r["section"],
"start_paragraph_id": r["start_paragraph_id"],
"start_character": r["start_character"],
"end_paragraph_id": r["end_paragraph_id"],
"end_character": r["end_character"],
"text": r["text"],
"bleu_score": None, # wrt original evidence
"meta": None # dataset/task specific
} for r in res_list]
output = [{"answer": answer, "provenance": provenance}]
return {"id": q_id,
"input": query,
"output": output, # each element is an answer or provenance (can have multiple of each)
"meta": None # dataset/task specific
}
kilt_output = []
with open(args.kilt_input_file, "r") as f:
kilt_items = [json.loads(x) for x in f.read().strip().split("\n")]
progress_bar = tqdm(range(len(kilt_items)), desc="Creating KILT response document")
for idx, item in enumerate(kilt_items):
query = item["input"]
res_list = query_index(query)
res_list = [res for res in res_list if len(res["text"].split()) > min_snippet_length][:int(topk / 3)]
documents = [res["text"] for res in res_list]
conditioned_doc = "<P> " + " <P> ".join([d for d in documents])
query_and_docs = "question: {} context: {}".format(query, conditioned_doc)
model_input = eli5_tokenizer(query_and_docs, truncation=True, padding=True, return_tensors="pt")
generated_answers_encoded = eli5_model.generate(input_ids=model_input["input_ids"].to(device),
attention_mask=model_input["attention_mask"].to(device),
min_length=50,
max_length=250,
do_sample=False,
early_stopping=True,
num_beams=8,
temperature=1.0,
top_k=None,
top_p=None,
no_repeat_ngram_size=3,
num_return_sequences=1)
answer = eli5_tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
kilt_example = create_kilt_datapoint(item["id"], query, answer[0], res_list)
kilt_output.append(kilt_example)
progress_bar.update(1)
with open(args.kilt_output_file, "w") as fp:
for kilt_example in kilt_output:
json.dump(kilt_example, fp)
fp.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--kilt_input_file', default="./eli5-dev-kilt.jsonl", type=str)
parser.add_argument('--kilt_output_file', default="./eli5-predicted_retrieval.jsonl", type=str)
parser.add_argument(
"--question_encoder_name",
default="vblagoje/dpr-question_encoder-single-lfqa-base",
help="Question encoder to use",
)
parser.add_argument(
"--index_file_name",
default="../data/kilt_dpr_wikipedia_first.faiss",
help="Faiss index with passage embeddings",
)
args = parser.parse_args()
assert os.path.isfile(args.kilt_input_file), f"Input file {args.kilt_input_file} couldn't be loaded"
eval_generate(args)
|