article_topics / app.py
kirillbogatiy's picture
Create app.py
c641155
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
from transformers import pipeline
with open('labels.txt') as f:
LABEL2STR = f.readline().split()
@st.cache(allow_output_mutation=True)
def load_model():
tokenizer = AutoTokenizer.from_pretrained("kirillbogatiy/model_topics")
model = AutoModelForSequenceClassification.from_pretrained("kirillbogatiy/model_topics")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
return pipe
def pretty_output(predictions, thr=0.95):
cumulative_score = 0
st.write('Possible topics:')
for label, data in enumerate(sorted(predictions[0], key=lambda item: item['score'], reverse=True)):
score = data['score']
cumulative_score += score
st.write('{}: {} %'.format(LABEL2STR[label], round(100 * score, 2)))
if cumulative_score >= thr:
return
if __name__ == '__main__':
title = st.text_input('Input a title here:')
abstract = st.text_input('Input an abstract here:')
pipe = load_model()
if title:
predictions = pipe('Title: {}\n\nAbstract: {}'.format(title, abstract))
pretty_output(predictions)