File size: 2,678 Bytes
99b188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbc8c5
 
 
 
15da885
efbc8c5
 
 
99b188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5c009
 
3cfc085
8ebbd91
fcccb19
99b188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
from streamlit_folium import st_folium, folium_static
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure
import gradio as gr

from functions import decode_features, get_model, get_weather_df, get_weather_data


project = hopsworks.login()
fs = project.get_feature_store()
feature_view = fs.get_feature_view(
    name = 'oslo_air_quality_fv',
    version = 1
)

# model = get_model(project=project,
#                   model_name="air_quality_model",
#                   evaluation_metric="f1_score",
#                   sort_metrics_by="max")
mr = project.get_model_registry()
model = mr.get_model("air_quality_model",version = 3)
model_dir = model.download() 
model = joblib.load(model_dir + "/model.pkl")


def pred(name):
    str1 = " "
    for i in range(8):
        target_date = datetime.today() + timedelta(days=i)
        target_date = target_date.strftime('%Y-%m-%d')

        data_weather = [get_weather_data('oslo',target_date)]
        df_weather = get_weather_df(data_weather)
        df_weather['conditions'] = df_weather['conditions'].replace(['Rain','Clear','Snow','Partially cloudy','Overcast','Snow, Partially cloudy',
                                                             'Rain, Partially cloudy','Rain, Overcast','Snow, Overcast',
                                                             'Snow, Freezing Drizzle/Freezing Rain, Overcast','Snow, Rain',
                                                             'Snow, Rain, Freezing Drizzle/Freezing Rain, Ice, Overcast',
                                                             'Snow, Rain, Freezing Drizzle/Freezing Rain, Overcast','Snow, Rain, Ice, Overcast',
                                                             'Snow, Rain, Overcast','Snow, Rain, Partially cloudy'],[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
        df_weather = df_weather.drop(columns=["date"]).fillna(0)
        # df_weather.insert(df_weather.index('tempmax'),'aqi')
        # df_weather["aqi"] = 0
        df_weather.insert(loc=0, column='aqi', value=0)
        print(df_weather)
        # print(feature_view.columns)
        preds = model.predict(df_weather)
        print(preds)
        if(i!=0):
            str1 += target_date + " predicted aqi:" + str(int(preds))+"\n"
    
    return str1
            

    # next_day_date = datetime.today() + timedelta(days=i)
    # next_day = next_day_date.strftime ('%d/%m/%Y')

demo = gr.Interface(fn=pred,title="Predict AQI of Oslo" ,inputs="text", outputs="text")

if __name__ == "__main__":
    demo.launch()