from datetime import datetime import requests import os import joblib import pandas as pd from dotenv import load_dotenv load_dotenv() def decode_features(df, feature_view): """Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions""" df_res = df.copy() import inspect td_transformation_functions = feature_view._batch_scoring_server._transformation_functions res = {} for feature_name in td_transformation_functions: if feature_name in df_res.columns: td_transformation_function = td_transformation_functions[feature_name] sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals() param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty]) if td_transformation_function.name == "min_max_scaler": df_res[feature_name] = df_res[feature_name].map( lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"]) elif td_transformation_function.name == "standard_scaler": df_res[feature_name] = df_res[feature_name].map( lambda x: x * param_dict['std_dev'] + param_dict["mean"]) elif td_transformation_function.name == "label_encoder": dictionary = param_dict['value_to_index'] dictionary_ = {v: k for k, v in dictionary.items()} df_res[feature_name] = df_res[feature_name].map( lambda x: dictionary_[x]) return df_res def get_model(project, model_name, evaluation_metric, sort_metrics_by): """Retrieve desired model or download it from the Hopsworks Model Registry. In second case, it will be physically downloaded to this directory""" TARGET_FILE = "model.pkl" list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \ in os.walk('.') for filename in filenames if filename == TARGET_FILE] if list_of_files: model_path = list_of_files[0] model = joblib.load(model_path) else: if not os.path.exists(TARGET_FILE): mr = project.get_model_registry() # get best model based on custom metrics model = mr.get_best_model(model_name, evaluation_metric, sort_metrics_by) model_dir = model.download() model = joblib.load(model_dir + "/model.pkl") return model def get_air_json(city_name, AIR_QUALITY_API_KEY): return requests.get(f'https://api.waqi.info/feed/{city_name}/?token={AIR_QUALITY_API_KEY}').json()['data'] def get_air_quality_data(city_name): AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY') json = get_air_json(city_name, AIR_QUALITY_API_KEY) iaqi = json['iaqi'] forecast = json['forecast']['daily'] print(city_name) print(forecast.keys()) return [ # city_name, # json['aqi'], # AQI json['time']['s'][:10], # Date float(iaqi['pm25']['v']), float(iaqi['pm10']['v']), iaqi['no2']['v'] # iaqi['t']['v'] # forecast['o3'][0]['avg'], # forecast['o3'][0]['max'], # forecast['o3'][0]['min'], # forecast['pm10'][0]['avg'], # forecast['pm10'][0]['max'], # forecast['pm10'][0]['min'], # forecast['pm25'][0]['avg'], # forecast['pm25'][0]['max'], # forecast['pm25'][0]['min'], # forecast['uvi'][0]['avg'], # forecast['uvi'][0]['max'], # forecast['uvi'][0]['min'] # forecast['pm25'][0]['min'] ] def get_air_quality_df(data): col_names = [ # 'city', # 'aqi', 'date', 'pm25', 'pm10', 'no2' # 'o3_avg', # 'o3_max', # 'o3_min', # 'pm10_avg', # 'pm10_max', # 'pm10_min', # 'pm25_avg', # 'pm25_max', # 'pm25_min', # 'uvi_avg', # 'uvi_max', # 'uvi_min', # 'pm25_min' ] new_data = pd.DataFrame( data, columns=col_names ) new_data.date = new_data.date.apply(timestamp_2_time) return new_data def get_weather_json(city, date, WEATHER_API_KEY): return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city.lower()}/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json() def get_weather_data(city_name, date): WEATHER_API_KEY = os.getenv('WEATHER_API_KEY') json = get_weather_json(city_name, date, WEATHER_API_KEY) data = json['days'][0] return [ # json['address'].capitalize(), data['datetime'], data['tempmax'], data['tempmin'], data['temp'], # data['feelslikemax'], # data['feelslikemin'], # data['feelslike'], data['dew'], data['humidity'], data['precip'], # data['precipprob'], data['precipcover'], data['snow'], data['snowdepth'], data['windgust'], data['windspeed'], data['winddir'], # data['pressure'], data['cloudcover'], data['visibility'], # data['solarradiation'], # data['solarenergy'], int(data['uvindex']), data['conditions'] ] def get_weather_df(data): col_names = [ # 'city', 'date', 'tempmax', 'tempmin', 'temp', # 'feelslikemax', # 'feelslikemin', # 'feelslike', 'dew', 'humidity', 'precip', # 'precipprob', 'precipcover', 'snow', 'snowdepth', 'windgust', 'windspeed', 'winddir', # 'pressure', 'cloudcover', 'visibility', # 'solarradiation', # 'solarenergy', 'uvindex', 'conditions' ] new_data = pd.DataFrame( data, columns=col_names ) new_data.date = new_data.date.apply(timestamp_2_time) return new_data def timestamp_2_time(x): dt_obj = datetime.strptime(str(x), '%Y-%m-%d') dt_obj = dt_obj.timestamp() * 1000 return int(dt_obj)