Spaces:
Sleeping
Sleeping
import streamlit as st | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import folium | |
from streamlit_folium import st_folium, folium_static | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from branca.element import Figure | |
from functions import decode_features, get_model | |
def fancy_header(text, font_size=24): | |
res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>' | |
st.markdown(res, unsafe_allow_html=True ) | |
st.title('⛅️Air Quality Prediction Project🌩') | |
progress_bar = st.sidebar.header('⚙️ Working Progress') | |
progress_bar = st.sidebar.progress(0) | |
st.write(36 * "-") | |
fancy_header('\n📡 Connecting to Hopsworks Feature Store...') | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
feature_view = fs.get_feature_view( | |
name = 'oslo_air_quality_fv', | |
version = 1 | |
) | |
st.write("Successfully connected!✔️") | |
progress_bar.progress(20) | |
# st.write(36 * "-") | |
# fancy_header('\n☁️ Getting batch data from Feature Store...') | |
# start_date = datetime.now() - timedelta(days=1) | |
# start_time = int(start_date.timestamp()) * 1000 | |
# # X = feature_view.get_batch_data(start_time=start_time) | |
# # 1662652800000 | |
# X = feature_view.get_batch_data(start_time=1662652800000) | |
# progress_bar.progress(50) | |
# print(X.date.values) | |
# latest_date_unix = str(X.date.values[0])[:10] | |
# latest_date = time.ctime(int(latest_date_unix)) | |
# st.write(f"⏱ Data for {latest_date}") | |
# X = X.drop(columns=["date"]).fillna(0) | |
# print("X is \n %s" % X) | |
# data_to_display = decode_features(X, feature_view=feature_view) | |
# progress_bar.progress(60) | |
# st.write(36 * "-") | |
# fancy_header(f"🗺 Processing the map...") | |
# fig = Figure(width=550,height=350) | |
# my_map = folium.Map(location=[58, 20], zoom_start=3.71) | |
# fig.add_child(my_map) | |
# folium.TileLayer('Stamen Terrain').add_to(my_map) | |
# folium.TileLayer('Stamen Toner').add_to(my_map) | |
# folium.TileLayer('Stamen Water Color').add_to(my_map) | |
# folium.TileLayer('cartodbpositron').add_to(my_map) | |
# folium.TileLayer('cartodbdark_matter').add_to(my_map) | |
# folium.LayerControl().add_to(my_map) | |
# data_to_display = data_to_display[["city", "temp", "humidity", | |
# "conditions", "aqi"]] | |
# cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927], | |
# ("Stockholm", "Sweden"): [59.334591, 18.063240], | |
# ("Malmo", "Sweden"): [55.604981, 13.003822], | |
# ("Kyiv", "Ukraine"): [50.450001, 30.523333]} | |
# # if "Kyiv" in data_to_display["city"]: | |
# # cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333] | |
# # pass | |
# data_to_display = data_to_display.set_index("city") | |
# cols_names_dict = {"temp": "Temperature", | |
# "humidity": "Humidity", | |
# "conditions": "Conditions", | |
# "aqi": "AQI"} | |
# data_to_display = data_to_display.rename(columns=cols_names_dict) | |
# cols_ = ["Temperature", "Humidity", "AQI"] | |
# data_to_display[cols_] = data_to_display[cols_].apply(lambda x: round(x, 1)) | |
# for city, country in cities_coords: | |
# text = f""" | |
# <h4 style="color:green;">{city}</h4> | |
# <h5 style="color":"green"> | |
# <table style="text-align: right;"> | |
# <tr> | |
# <th>Country:</th> | |
# <td><b>{country}</b></td> | |
# </tr> | |
# """ | |
# for column in data_to_display.columns: | |
# text += f""" | |
# <tr> | |
# <th>{column}:</th> | |
# <td>{data_to_display.loc[city][column]}</td> | |
# </tr>""" | |
# text += """</table> | |
# </h5>""" | |
# folium.Marker( | |
# cities_coords[(city, country)], popup=text, tooltip=f"<strong>{city}</strong>" | |
# ).add_to(my_map) | |
# # call to render Folium map in Streamlit | |
# folium_static(my_map) | |
# progress_bar.progress(80) | |
# st.sidebar.write("-" * 36) | |
# model = get_model(project=project, | |
# model_name="gradient_boost_model", | |
# evaluation_metric="f1_score", | |
# sort_metrics_by="max") | |
# preds = model.predict(X) | |
# cities = [city_tuple[0] for city_tuple in cities_coords.keys()] | |
# print("cities are %s" % cities) | |
# next_day_date = datetime.today() + timedelta(days=1) | |
# next_day = next_day_date.strftime ('%d/%m/%Y') | |
# print("preds is %s" % preds) | |
# df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int) | |
# st.sidebar.write(df) | |
# progress_bar.progress(100) | |
# st.button("Re-run") | |
# # hi |