Spaces:
Sleeping
Sleeping
Create streamlit_app.py
Browse files- streamlit_app.py +149 -0
streamlit_app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import hopsworks
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import folium
|
7 |
+
from streamlit_folium import st_folium, folium_static
|
8 |
+
import json
|
9 |
+
import time
|
10 |
+
from datetime import timedelta, datetime
|
11 |
+
from branca.element import Figure
|
12 |
+
|
13 |
+
from functions import decode_features, get_model
|
14 |
+
|
15 |
+
|
16 |
+
def fancy_header(text, font_size=24):
|
17 |
+
res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>'
|
18 |
+
st.markdown(res, unsafe_allow_html=True )
|
19 |
+
|
20 |
+
|
21 |
+
st.title('⛅️Air Quality Prediction Project🌩')
|
22 |
+
|
23 |
+
progress_bar = st.sidebar.header('⚙️ Working Progress')
|
24 |
+
progress_bar = st.sidebar.progress(0)
|
25 |
+
st.write(36 * "-")
|
26 |
+
fancy_header('\n📡 Connecting to Hopsworks Feature Store...')
|
27 |
+
|
28 |
+
project = hopsworks.login()
|
29 |
+
fs = project.get_feature_store()
|
30 |
+
feature_view = fs.get_feature_view(
|
31 |
+
name = 'air_quality_fv',
|
32 |
+
version = 1
|
33 |
+
)
|
34 |
+
|
35 |
+
st.write("Successfully connected!✔️")
|
36 |
+
progress_bar.progress(20)
|
37 |
+
|
38 |
+
st.write(36 * "-")
|
39 |
+
fancy_header('\n☁️ Getting batch data from Feature Store...')
|
40 |
+
|
41 |
+
start_date = datetime.now() - timedelta(days=1)
|
42 |
+
start_time = int(start_date.timestamp()) * 1000
|
43 |
+
|
44 |
+
# X = feature_view.get_batch_data(start_time=start_time)
|
45 |
+
|
46 |
+
# 1662652800000
|
47 |
+
X = feature_view.get_batch_data(start_time=1662652800000)
|
48 |
+
progress_bar.progress(50)
|
49 |
+
|
50 |
+
print(X.date.values)
|
51 |
+
|
52 |
+
latest_date_unix = str(X.date.values[0])[:10]
|
53 |
+
latest_date = time.ctime(int(latest_date_unix))
|
54 |
+
|
55 |
+
st.write(f"⏱ Data for {latest_date}")
|
56 |
+
|
57 |
+
X = X.drop(columns=["date"]).fillna(0)
|
58 |
+
print("X is \n %s" % X)
|
59 |
+
|
60 |
+
data_to_display = decode_features(X, feature_view=feature_view)
|
61 |
+
|
62 |
+
progress_bar.progress(60)
|
63 |
+
|
64 |
+
st.write(36 * "-")
|
65 |
+
fancy_header(f"🗺 Processing the map...")
|
66 |
+
|
67 |
+
fig = Figure(width=550,height=350)
|
68 |
+
|
69 |
+
my_map = folium.Map(location=[58, 20], zoom_start=3.71)
|
70 |
+
fig.add_child(my_map)
|
71 |
+
folium.TileLayer('Stamen Terrain').add_to(my_map)
|
72 |
+
folium.TileLayer('Stamen Toner').add_to(my_map)
|
73 |
+
folium.TileLayer('Stamen Water Color').add_to(my_map)
|
74 |
+
folium.TileLayer('cartodbpositron').add_to(my_map)
|
75 |
+
folium.TileLayer('cartodbdark_matter').add_to(my_map)
|
76 |
+
folium.LayerControl().add_to(my_map)
|
77 |
+
|
78 |
+
data_to_display = data_to_display[["city", "temp", "humidity",
|
79 |
+
"conditions", "aqi"]]
|
80 |
+
|
81 |
+
cities_coords = {("Sundsvall", "Sweden"): [62.390811, 17.306927],
|
82 |
+
("Stockholm", "Sweden"): [59.334591, 18.063240],
|
83 |
+
("Malmo", "Sweden"): [55.604981, 13.003822],
|
84 |
+
("Kyiv", "Ukraine"): [50.450001, 30.523333]}
|
85 |
+
|
86 |
+
# if "Kyiv" in data_to_display["city"]:
|
87 |
+
# cities_coords[("Kyiv", "Ukraine")]: [50.450001, 30.523333]
|
88 |
+
# pass
|
89 |
+
|
90 |
+
data_to_display = data_to_display.set_index("city")
|
91 |
+
|
92 |
+
cols_names_dict = {"temp": "Temperature",
|
93 |
+
"humidity": "Humidity",
|
94 |
+
"conditions": "Conditions",
|
95 |
+
"aqi": "AQI"}
|
96 |
+
|
97 |
+
data_to_display = data_to_display.rename(columns=cols_names_dict)
|
98 |
+
|
99 |
+
cols_ = ["Temperature", "Humidity", "AQI"]
|
100 |
+
data_to_display[cols_] = data_to_display[cols_].apply(lambda x: round(x, 1))
|
101 |
+
|
102 |
+
for city, country in cities_coords:
|
103 |
+
text = f"""
|
104 |
+
<h4 style="color:green;">{city}</h4>
|
105 |
+
<h5 style="color":"green">
|
106 |
+
<table style="text-align: right;">
|
107 |
+
<tr>
|
108 |
+
<th>Country:</th>
|
109 |
+
<td><b>{country}</b></td>
|
110 |
+
</tr>
|
111 |
+
"""
|
112 |
+
for column in data_to_display.columns:
|
113 |
+
text += f"""
|
114 |
+
<tr>
|
115 |
+
<th>{column}:</th>
|
116 |
+
<td>{data_to_display.loc[city][column]}</td>
|
117 |
+
</tr>"""
|
118 |
+
text += """</table>
|
119 |
+
</h5>"""
|
120 |
+
|
121 |
+
folium.Marker(
|
122 |
+
cities_coords[(city, country)], popup=text, tooltip=f"<strong>{city}</strong>"
|
123 |
+
).add_to(my_map)
|
124 |
+
|
125 |
+
|
126 |
+
# call to render Folium map in Streamlit
|
127 |
+
folium_static(my_map)
|
128 |
+
progress_bar.progress(80)
|
129 |
+
st.sidebar.write("-" * 36)
|
130 |
+
|
131 |
+
|
132 |
+
model = get_model(project=project,
|
133 |
+
model_name="gradient_boost_model",
|
134 |
+
evaluation_metric="f1_score",
|
135 |
+
sort_metrics_by="max")
|
136 |
+
|
137 |
+
preds = model.predict(X)
|
138 |
+
|
139 |
+
cities = [city_tuple[0] for city_tuple in cities_coords.keys()]
|
140 |
+
print("cities are %s" % cities)
|
141 |
+
|
142 |
+
next_day_date = datetime.today() + timedelta(days=1)
|
143 |
+
next_day = next_day_date.strftime ('%d/%m/%Y')
|
144 |
+
print("preds is %s" % preds)
|
145 |
+
df = pd.DataFrame(data=preds, index=cities, columns=[f"AQI Predictions for {next_day}"], dtype=int)
|
146 |
+
|
147 |
+
st.sidebar.write(df)
|
148 |
+
progress_bar.progress(100)
|
149 |
+
st.button("Re-run")
|