import streamlit as st import hopsworks import joblib import pandas as pd import numpy as np import folium from streamlit_folium import st_folium, folium_static import json import time from datetime import timedelta, datetime from branca.element import Figure import gradio as gr from functions import decode_features, get_model, get_weather_df, get_weather_data project = hopsworks.login() fs = project.get_feature_store() feature_view = fs.get_feature_view( name = 'oslo_air_quality_fv', version = 1 ) model = get_model(project=project, model_name="air_quality_model", evaluation_metric="f1_score", sort_metrics_by="max", version_name=3) def pred(name): str1 = " " for i in range(8): target_date = datetime.today() + timedelta(days=i) target_date = target_date.strftime('%Y-%m-%d') data_weather = [get_weather_data('oslo',target_date)] df_weather = get_weather_df(data_weather) df_weather['conditions'] = df_weather['conditions'].replace(['Rain','Clear','Snow','Partially cloudy','Overcast','Snow, Partially cloudy', 'Rain, Partially cloudy','Rain, Overcast','Snow, Overcast', 'Snow, Freezing Drizzle/Freezing Rain, Overcast','Snow, Rain', 'Snow, Rain, Freezing Drizzle/Freezing Rain, Ice, Overcast', 'Snow, Rain, Freezing Drizzle/Freezing Rain, Overcast','Snow, Rain, Ice, Overcast', 'Snow, Rain, Overcast','Snow, Rain, Partially cloudy'],[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) df_weather = df_weather.drop(columns=["date"]).fillna(0) df_weather["aqi"] = 0 preds = model.predict(df_weather) print(preds) if(i!=0): str1 += target_date + " predicted aqi:" + str(int(preds))+"\n" return str1 # next_day_date = datetime.today() + timedelta(days=i) # next_day = next_day_date.strftime ('%d/%m/%Y') demo = gr.Interface(fn=pred,title="Predict AQI of Oslo" ,inputs="text", outputs="text") if __name__ == "__main__": demo.launch()