File size: 4,774 Bytes
38d8e22
 
eb56186
ac72b2d
d8fabc9
eb56186
 
38d8e22
eb56186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748a748
 
 
 
 
eb56186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d8e22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-

"""
@Author     : karan kumar pathak
@Contact    : karan ku
@Description:
"""

import os
import gradio as gr
from huggingface_hub import snapshot_download
from prettytable import PrettyTable
import pandas as pd
import torch
import traceback

config = {
    "model_type": "roberta",
    "model_name_or_path": "roberta-large",
    "logic_lambda": 0.5,
    "prior": "random",
    "mask_rate": 0.0,
    "cand_k": 1,
    "max_seq1_length": 256,
    "max_seq2_length": 128,
    "max_num_questions": 8,
    "do_lower_case": False,
    "seed": 42,
    "n_gpu": torch.cuda.device_count(),
}

os.system('git clone https://github.com/kkpathak91/project_metch')
os.system('rm -r project_metch/data/')
os.system('rm -r project_metch/results/')
os.system('rm -r project_metch/models/')
os.system('mv project_metch/* ./')

model_dir = snapshot_download('Jiangjie/loren')
config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/')
config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')


from src.loren import Loren


loren = Loren(config, verbose=False)
try:
    js = loren.check('Donald Trump won the 2020 U.S. presidential election.')
except Exception as e:
    raise ValueError(e)


def highlight_phrase(text, phrase):
    text = loren.fc_client.tokenizer.clean_up_tokenization(text)
    return text.replace('<mask>', f'<i><b>{phrase}</b></i>')


def highlight_entity(text, entity):
    return text.replace(entity, f'<i><b>{entity}</b></i>')


def gradio_formatter(js, output_type):
    zebra_css = '''
    tr:nth-child(even) {
        background: #f1f1f1;
    }
    thead{
        background: #f1f1f1;
    }'''
    if output_type == 'e':
        data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]}
    elif output_type == 'z':
        p_sup, p_ref, p_nei = [], [], []
        for x in js['phrase_veracity']:
            max_idx = torch.argmax(torch.tensor(x)).tolist()
            x = ['%.4f' % xx for xx in x]
            x[max_idx] = f'<i><b>{x[max_idx]}</b></i>'
            p_sup.append(x[2])
            p_ref.append(x[0])
            p_nei.append(x[1])

        data = {
            'Claim Phrase': js['claim_phrases'],
            'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])],
            'p_SUP': p_sup,
            'p_REF': p_ref,
            'p_NEI': p_nei,
        }
    else:
        raise NotImplementedError
    data = pd.DataFrame(data)
    pt = PrettyTable(field_names=list(data.columns), 
        align='l', border=True, hrules=1, vrules=1)
    for v in data.values:
        pt.add_row(v)
    html = pt.get_html_string(attributes={
        'style': 'border-width: 2px; bordercolor: black'
    }, format=True)
    html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html
    html = html.replace('&lt;', '<').replace('&gt;', '>')
    return html


def run(claim):
    try:
        js = loren.check(claim)
    except Exception as error_msg:
        exc = traceback.format_exc()
        msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
        loren.logger.error(claim)
        loren.logger.error(msg)
        return 'Oops, something went wrong.', '', ''
    label = js['claim_veracity']
    loren.logger.warning(label + str(js))
    ev_html = gradio_formatter(js, 'e')
    z_html = gradio_formatter(js, 'z')
    return label, z_html, ev_html


iface = gr.Interface(
    fn=run,
    inputs="text",
    outputs=[
        'text',
        'html',
        'html',
    ],
    examples=['Donald Trump won the U.S. 2020 presidential election.',
              'The first inauguration of Bill Clinton was in the United States.',
              'The Cry of the Owl is based on a book by an American.',
              'Smriti Mandhana is an Indian woman.'],
    title="LOREN",
    layout='horizontal',
    description="LOREN is an interpretable Fact Verification model using Wikipedia as its knowledge source. "
                "This is a demo system for the AAAI 2022 paper: \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\"(https://arxiv.org/abs/2012.13577). "
                "See the paper for more details. You can add a *FLAG* on the bottom to record interesting or bad cases! "
                "(Note that the demo system directly retrieves evidence from an up-to-date Wikipedia, which is different from the evidence used in the paper.)",
    flagging_dir='results/flagged/',
    allow_flagging=True,
    flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
                      'Error: Require Commonsense', 'Error: Evidence Retrieval'],
    enable_queue=True
)
iface.launch()