Spaces:
Runtime error
Runtime error
File size: 4,135 Bytes
eb56186 affea88 091be56 eb56186 38d8e22 eb56186 5a4452e eb56186 8ea1bf3 eb56186 b74a24a 51ec97a eb56186 b74a24a 4e5079a 96cacaf b74a24a 96cacaf b74a24a e8bdaf4 b74a24a e8bdaf4 b74a24a e8bdaf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
"""
Name: karan kumar Pathak
Email: 2020fc04335@wilp.bits-pilani.com
"""
import os
import gradio as gr
from huggingface_hub import snapshot_download
from prettytable import PrettyTable
import pandas as pd
import torch
import traceback
config = {
"model_type": "roberta",
"model_name_or_path": "roberta-large",
"logic_lambda": 0.5,
"prior": "random",
"mask_rate": 0.0,
"cand_k": 1,
"max_seq1_length": 256,
"max_seq2_length": 128,
"max_num_questions": 8,
"do_lower_case": False,
"seed": 42,
"n_gpu": torch.cuda.device_count(),
}
os.system('git clone https://github.com/kkpathak91/project_metch/')
os.system('rm -r project_metch/data/')
os.system('rm -r project_metch/results/')
os.system('rm -r project_metch/models/')
os.system('mv project_metch/* ./')
model_dir = snapshot_download('kkpathak91/FVM')
config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/')
config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')
from src.loren import Loren
loren = Loren(config, verbose=False)
try:
js = loren.check('Donald Trump won the 2020 U.S. presidential election.')
except Exception as e:
raise ValueError(e)
def highlight_phrase(text, phrase):
text = loren.fc_client.tokenizer.clean_up_tokenization(text)
return text.replace('<mask>', f'<i><b>{phrase}</b></i>')
def highlight_entity(text, entity):
return text.replace(entity, f'<i><b>{entity}</b></i>')
def gradio_formatter(js, output_type):
zebra_css = '''
tr:nth-child(even) {
background: #f1f1f1;
}
thead{
background: #f1f1f1;
}'''
if output_type == 'e':
data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]}
elif output_type == 'z':
p_sup, p_ref, p_nei = [], [], []
for x in js['phrase_veracity']:
max_idx = torch.argmax(torch.tensor(x)).tolist()
x = ['%.4f' % xx for xx in x]
x[max_idx] = f'<i><b>{x[max_idx]}</b></i>'
p_sup.append(x[2])
p_ref.append(x[0])
p_nei.append(x[1])
data = {
'Claim Phrase': js['claim_phrases'],
'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])],
'p_SUP': p_sup,
'p_REF': p_ref,
'p_NEI': p_nei,
}
else:
raise NotImplementedError
data = pd.DataFrame(data)
pt = PrettyTable(field_names=list(data.columns),
align='l', border=True, hrules=1, vrules=1)
for v in data.values:
pt.add_row(v)
html = pt.get_html_string(attributes={
'style': 'border-width: 2px; bordercolor: black'
}, format=True)
html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html
html = html.replace('<', '<').replace('>', '>')
return html
def run(claim):
try:
js = loren.check(claim)
except Exception as error_msg:
exc = traceback.format_exc()
msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
loren.logger.error(claim)
loren.logger.error(msg)
return 'Oops, something went wrong.', '', ''
label = js['claim_veracity']
loren.logger.warning(label + str(js))
ev_html = gradio_formatter(js, 'e')
z_html = gradio_formatter(js, 'z')
return label, z_html, ev_html
iface = gr.Interface(
fn=run,
inputs="text",
outputs=[
'text',
'html',
'html',
],
examples=['Kanpur is a city in Nepal',
'PV Sindhu is an Indian Badminton Player.'],
title="A Framework for Data-Driven Document Evaluation and Scoring",
layout='horizontal',
description="[Student Name: Karan Kumar Pathak] " " [Roll No.: 2020fc04334] ",
flagging_dir='results/flagged/',
allow_flagging='auto',
flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
'Error: Require Commonsense', 'Error: Evidence Retrieval']
)
iface.launch(enable_queue=True) |