ChatBot / app.py
kkrainiukk's picture
Update app.py
5f815a1 verified
import os
from langchain_huggingface import HuggingFaceEndpoint
from transformers import pipeline
import streamlit as st
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import YoutubeLoader, WebBaseLoader
model_id="unsloth/Llama-3.2-1B-Instruct"
model = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
token=os.getenv("HF_TOKEN")
)
url = "https://www.youtube.com/watch?v=QsYGlZkevEg"
loader = YoutubeLoader.from_youtube_url(url, add_video_info=False)
data = loader.load()
def generate(prompt: str) -> str:
## 1. Transform `input` into a desired format (e.g. it can be simply a string, or a list of dictionaries)
## The format of the input depends on the model you are using. You should check the model's documentation.
input = prompt
response = model(input, max_new_tokens=512)
# 2. Make sure to return just the content of the AI response (most of the time the model returns a dictionary with additional information)
return response[0]['generated_text']
generate("Hello World!")
BASE_PROMPT = """
You are provided with a context and a user query. Your task is to answer the user query based on the provided context.
## Context
{data}
## Query
{query}
## Answer
"""
# model_id="mistralai/Mistral-7B-Instruct-v0.3"
# def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1, top_k=50, top_p=0.9):
# """
# Returns a language model for HuggingFace inference.
# Parameters:
# - model_id (str): The ID of the HuggingFace model repository.
# - max_new_tokens (int): The maximum number of new tokens to generate.
# - temperature (float): The temperature for sampling from the model.
# - top_k (int): The number of highest probability tokens to consider.
# - top_p (float): The cumulative probability threshold for token selection.
# Returns:
# - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
# """
# llm = HuggingFaceEndpoint(
# repo_id=model_id,
# max_new_tokens=max_new_tokens,
# temperature=temperature,
# top_k=top_k,
# top_p=top_p,
# token=os.getenv("HF_TOKEN")
# )
# return llm
# # Configure the Streamlit app
# st.set_page_config(page_title="HuggingFace ChatBot", page_icon="πŸ€—")
# st.title("Personal HuggingFace ChatBot")
# st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*")
# # Initialize session state for avatars
# if "avatars" not in st.session_state:
# st.session_state.avatars = {'user': None, 'assistant': None}
# # Initialize session state for user text input
# if 'user_text' not in st.session_state:
# st.session_state.user_text = None
# # Initialize session state for model parameters
# if "max_response_length" not in st.session_state:
# st.session_state.max_response_length = 256
# if "top_k" not in st.session_state:
# st.session_state.top_k = 1.0
# if "top_p" not in st.session_state:
# st.session_state.top_p = 0.95
# if "temperature" not in st.session_state:
# st.session_state.temperature = 1.0
# if "system_message" not in st.session_state:
# st.session_state.system_message = "friendly AI conversing with a human user"
# if "starter_message" not in st.session_state:
# st.session_state.starter_message = "Hello, there! How can I help you today?"
# # Sidebar for settings
# with st.sidebar:
# st.header("System Settings")
# # AI Settings
# st.session_state.system_message = st.text_area(
# "System Message", value="You are a friendly AI conversing with a human user."
# )
# st.session_state.starter_message = st.text_area(
# 'First AI Message', value="Hello, there! How can I help you today?"
# )
# # Model Settings
# st.session_state.max_response_length = st.number_input(
# "Max Response Length", value=128
# )
# selected_option = st.selectbox("Choose parametrs", ("Pricise", "Balanced", "Creative", "Custom"))
# if selected_option == "Precise":
# st.session_state.temperature = 0.1
# st.session_state.top_k = 10.0
# st.session_state.top_p = 0.8
# elif selected_option == "Balanced":
# st.session_state.temperature = 1.0
# st.session_state.top_k = 100.0
# st.session_state.top_p = 0.9
# elif selected_option == "Creative":
# st.session_state.temperature = 10.0
# st.session_state.top_k = 1500.0
# st.session_state.top_p = 0.99
# elif selected_option == "Custom":
# st.session_state.temperature = st.number_input(
# "Temperature", value=st.session_state.temperature, min_value=0.0
# )
# st.session_state.top_k = st.number_input(
# "Top sK", value=st.session_state.top_k, min_value=1.0, step=1.0
# )
# st.session_state.top_p = st.number_input(
# "Top sP", value=st.session_state.top_p, min_value=0.0, max_value=1.0
# )
# # Avatar Selection
# st.markdown("*Select Avatars:*")
# col1, col2 = st.columns(2)
# with col1:
# st.session_state.avatars['assistant'] = st.selectbox(
# "AI Avatar", options=["πŸ€—", "πŸ’¬", "πŸ€–"], index=0
# )
# with col2:
# st.session_state.avatars['user'] = st.selectbox(
# "User Avatar", options=["πŸ‘€", "πŸ‘±β€β™‚οΈ", "πŸ‘¨πŸΎ", "πŸ‘©", "πŸ‘§πŸΎ"], index=0
# )
# # Reset Chat History
# reset_history = st.button("Reset Chat History")
# # Initialize or reset chat history
# if "chat_history" not in st.session_state or reset_history:
# st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
# def get_response(system_message, chat_history, user_text,
# eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
# """
# Generates a response from the chatbot model.
# Args:
# system_message (str): The system message for the conversation.
# chat_history (list): The list of previous chat messages.
# user_text (str): The user's input text.
# eos_token_id (list, optional): The list of end-of-sentence token IDs.
# max_new_tokens (int, optional): The maximum number of new tokens to generate.
# get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
# Returns:
# tuple: A tuple containing the generated response and the updated chat history.
# """
# # Set up the model
# hf = get_llm_hf_inference(
# model_id=model_id,
# max_new_tokens=max_new_tokens,
# temperature=st.session_state.temperature,
# top_k=st.session_state.top_k,
# top_p=st.session_state.top_p
# )
# # Create the prompt template
# prompt = PromptTemplate.from_template(
# (
# "[INST] {system_message}"
# "\nCurrent Conversation:\n{chat_history}\n\n"
# "\nUser: {user_text}.\n [/INST]"
# "\nAI:"
# )
# )
# # Make the chain and bind the prompt
# chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
# # Generate the response
# response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
# response = response.split("AI:")[-1]
# # Update the chat history
# chat_history.append({'role': 'user', 'content': user_text})
# chat_history.append({'role': 'assistant', 'content': response})
# return response, chat_history
# # Chat interface
# chat_interface = st.container(border=True)
# with chat_interface:
# output_container = st.container()
# st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
# # Display chat messages
# with output_container:
# # For every message in the history
# for message in st.session_state.chat_history:
# # Skip the system message
# if message['role'] == 'system':
# continue
# # Display the chat message using the correct avatar
# with st.chat_message(message['role'],
# avatar=st.session_state['avatars'][message['role']]):
# st.markdown(message['content'])
# # When the user enter new text:
# if st.session_state.user_text:
# # Display the user's new message immediately
# with st.chat_message("user",
# avatar=st.session_state.avatars['user']):
# st.markdown(st.session_state.user_text)
# # Display a spinner status bar while waiting for the response
# with st.chat_message("assistant",
# avatar=st.session_state.avatars['assistant']):
# with st.spinner("Thinking..."):
# # Call the Inference API with the system_prompt, user text, and history
# response, st.session_state.chat_history = get_response(
# system_message=st.session_state.system_message,
# user_text=st.session_state.user_text,
# chat_history=st.session_state.chat_history,
# max_new_tokens=st.session_state.max_response_length,
# )
# st.markdown(response)