Spaces:
Running
Running
import os | |
from langchain_huggingface import HuggingFaceEndpoint | |
from transformers import pipeline | |
import streamlit as st | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.document_loaders import YoutubeLoader, WebBaseLoader | |
model_id="unsloth/Llama-3.2-1B-Instruct" | |
model = pipeline( | |
"text-generation", | |
model=model_id, | |
torch_dtype="auto", | |
token=os.getenv("HF_TOKEN") | |
) | |
url = "https://www.youtube.com/watch?v=QsYGlZkevEg" | |
loader = YoutubeLoader.from_youtube_url(url, add_video_info=False) | |
data = loader.load() | |
def generate(prompt: str) -> str: | |
## 1. Transform `input` into a desired format (e.g. it can be simply a string, or a list of dictionaries) | |
## The format of the input depends on the model you are using. You should check the model's documentation. | |
input = prompt | |
response = model(input, max_new_tokens=512) | |
# 2. Make sure to return just the content of the AI response (most of the time the model returns a dictionary with additional information) | |
return response[0]['generated_text'] | |
generate("Hello World!") | |
BASE_PROMPT = """ | |
You are provided with a context and a user query. Your task is to answer the user query based on the provided context. | |
## Context | |
{data} | |
## Query | |
{query} | |
## Answer | |
""" | |
# model_id="mistralai/Mistral-7B-Instruct-v0.3" | |
# def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1, top_k=50, top_p=0.9): | |
# """ | |
# Returns a language model for HuggingFace inference. | |
# Parameters: | |
# - model_id (str): The ID of the HuggingFace model repository. | |
# - max_new_tokens (int): The maximum number of new tokens to generate. | |
# - temperature (float): The temperature for sampling from the model. | |
# - top_k (int): The number of highest probability tokens to consider. | |
# - top_p (float): The cumulative probability threshold for token selection. | |
# Returns: | |
# - llm (HuggingFaceEndpoint): The language model for HuggingFace inference. | |
# """ | |
# llm = HuggingFaceEndpoint( | |
# repo_id=model_id, | |
# max_new_tokens=max_new_tokens, | |
# temperature=temperature, | |
# top_k=top_k, | |
# top_p=top_p, | |
# token=os.getenv("HF_TOKEN") | |
# ) | |
# return llm | |
# # Configure the Streamlit app | |
# st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€") | |
# st.title("Personal HuggingFace ChatBot") | |
# st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*") | |
# # Initialize session state for avatars | |
# if "avatars" not in st.session_state: | |
# st.session_state.avatars = {'user': None, 'assistant': None} | |
# # Initialize session state for user text input | |
# if 'user_text' not in st.session_state: | |
# st.session_state.user_text = None | |
# # Initialize session state for model parameters | |
# if "max_response_length" not in st.session_state: | |
# st.session_state.max_response_length = 256 | |
# if "top_k" not in st.session_state: | |
# st.session_state.top_k = 1.0 | |
# if "top_p" not in st.session_state: | |
# st.session_state.top_p = 0.95 | |
# if "temperature" not in st.session_state: | |
# st.session_state.temperature = 1.0 | |
# if "system_message" not in st.session_state: | |
# st.session_state.system_message = "friendly AI conversing with a human user" | |
# if "starter_message" not in st.session_state: | |
# st.session_state.starter_message = "Hello, there! How can I help you today?" | |
# # Sidebar for settings | |
# with st.sidebar: | |
# st.header("System Settings") | |
# # AI Settings | |
# st.session_state.system_message = st.text_area( | |
# "System Message", value="You are a friendly AI conversing with a human user." | |
# ) | |
# st.session_state.starter_message = st.text_area( | |
# 'First AI Message', value="Hello, there! How can I help you today?" | |
# ) | |
# # Model Settings | |
# st.session_state.max_response_length = st.number_input( | |
# "Max Response Length", value=128 | |
# ) | |
# selected_option = st.selectbox("Choose parametrs", ("Pricise", "Balanced", "Creative", "Custom")) | |
# if selected_option == "Precise": | |
# st.session_state.temperature = 0.1 | |
# st.session_state.top_k = 10.0 | |
# st.session_state.top_p = 0.8 | |
# elif selected_option == "Balanced": | |
# st.session_state.temperature = 1.0 | |
# st.session_state.top_k = 100.0 | |
# st.session_state.top_p = 0.9 | |
# elif selected_option == "Creative": | |
# st.session_state.temperature = 10.0 | |
# st.session_state.top_k = 1500.0 | |
# st.session_state.top_p = 0.99 | |
# elif selected_option == "Custom": | |
# st.session_state.temperature = st.number_input( | |
# "Temperature", value=st.session_state.temperature, min_value=0.0 | |
# ) | |
# st.session_state.top_k = st.number_input( | |
# "Top sK", value=st.session_state.top_k, min_value=1.0, step=1.0 | |
# ) | |
# st.session_state.top_p = st.number_input( | |
# "Top sP", value=st.session_state.top_p, min_value=0.0, max_value=1.0 | |
# ) | |
# # Avatar Selection | |
# st.markdown("*Select Avatars:*") | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# st.session_state.avatars['assistant'] = st.selectbox( | |
# "AI Avatar", options=["π€", "π¬", "π€"], index=0 | |
# ) | |
# with col2: | |
# st.session_state.avatars['user'] = st.selectbox( | |
# "User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0 | |
# ) | |
# # Reset Chat History | |
# reset_history = st.button("Reset Chat History") | |
# # Initialize or reset chat history | |
# if "chat_history" not in st.session_state or reset_history: | |
# st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] | |
# def get_response(system_message, chat_history, user_text, | |
# eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}): | |
# """ | |
# Generates a response from the chatbot model. | |
# Args: | |
# system_message (str): The system message for the conversation. | |
# chat_history (list): The list of previous chat messages. | |
# user_text (str): The user's input text. | |
# eos_token_id (list, optional): The list of end-of-sentence token IDs. | |
# max_new_tokens (int, optional): The maximum number of new tokens to generate. | |
# get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function. | |
# Returns: | |
# tuple: A tuple containing the generated response and the updated chat history. | |
# """ | |
# # Set up the model | |
# hf = get_llm_hf_inference( | |
# model_id=model_id, | |
# max_new_tokens=max_new_tokens, | |
# temperature=st.session_state.temperature, | |
# top_k=st.session_state.top_k, | |
# top_p=st.session_state.top_p | |
# ) | |
# # Create the prompt template | |
# prompt = PromptTemplate.from_template( | |
# ( | |
# "[INST] {system_message}" | |
# "\nCurrent Conversation:\n{chat_history}\n\n" | |
# "\nUser: {user_text}.\n [/INST]" | |
# "\nAI:" | |
# ) | |
# ) | |
# # Make the chain and bind the prompt | |
# chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
# # Generate the response | |
# response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) | |
# response = response.split("AI:")[-1] | |
# # Update the chat history | |
# chat_history.append({'role': 'user', 'content': user_text}) | |
# chat_history.append({'role': 'assistant', 'content': response}) | |
# return response, chat_history | |
# # Chat interface | |
# chat_interface = st.container(border=True) | |
# with chat_interface: | |
# output_container = st.container() | |
# st.session_state.user_text = st.chat_input(placeholder="Enter your text here.") | |
# # Display chat messages | |
# with output_container: | |
# # For every message in the history | |
# for message in st.session_state.chat_history: | |
# # Skip the system message | |
# if message['role'] == 'system': | |
# continue | |
# # Display the chat message using the correct avatar | |
# with st.chat_message(message['role'], | |
# avatar=st.session_state['avatars'][message['role']]): | |
# st.markdown(message['content']) | |
# # When the user enter new text: | |
# if st.session_state.user_text: | |
# # Display the user's new message immediately | |
# with st.chat_message("user", | |
# avatar=st.session_state.avatars['user']): | |
# st.markdown(st.session_state.user_text) | |
# # Display a spinner status bar while waiting for the response | |
# with st.chat_message("assistant", | |
# avatar=st.session_state.avatars['assistant']): | |
# with st.spinner("Thinking..."): | |
# # Call the Inference API with the system_prompt, user text, and history | |
# response, st.session_state.chat_history = get_response( | |
# system_message=st.session_state.system_message, | |
# user_text=st.session_state.user_text, | |
# chat_history=st.session_state.chat_history, | |
# max_new_tokens=st.session_state.max_response_length, | |
# ) | |
# st.markdown(response) |