File size: 9,733 Bytes
c282b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import gradio as gr
import torch
import os
import warnings
from gradio.processing_utils import convert_to_16_bit_wav
from typing import Dict, List, Optional, Union

import utils
from infer import get_net_g, infer
from models import SynthesizerTrn
from models_jp_extra import SynthesizerTrn as SynthesizerTrnJPExtra

from .log import logger
from .constants import (
    DEFAULT_ASSIST_TEXT_WEIGHT,
    DEFAULT_LENGTH,
    DEFAULT_LINE_SPLIT,
    DEFAULT_NOISE,
    DEFAULT_NOISEW,
    DEFAULT_SDP_RATIO,
    DEFAULT_SPLIT_INTERVAL,
    DEFAULT_STYLE,
    DEFAULT_STYLE_WEIGHT,
)


class Model:
    def __init__(
        self, model_path: str, config_path: str, style_vec_path: str, device: str
    ):
        self.model_path: str = model_path
        self.config_path: str = config_path
        self.device: str = device
        self.style_vec_path: str = style_vec_path
        self.hps: utils.HParams = utils.get_hparams_from_file(self.config_path)
        self.spk2id: Dict[str, int] = self.hps.data.spk2id
        self.id2spk: Dict[int, str] = {v: k for k, v in self.spk2id.items()}

        self.num_styles: int = self.hps.data.num_styles
        if hasattr(self.hps.data, "style2id"):
            self.style2id: Dict[str, int] = self.hps.data.style2id
        else:
            self.style2id: Dict[str, int] = {str(i): i for i in range(self.num_styles)}
        if len(self.style2id) != self.num_styles:
            raise ValueError(
                f"Number of styles ({self.num_styles}) does not match the number of style2id ({len(self.style2id)})"
            )

        self.style_vectors: np.ndarray = np.load(self.style_vec_path)
        if self.style_vectors.shape[0] != self.num_styles:
            raise ValueError(
                f"The number of styles ({self.num_styles}) does not match the number of style vectors ({self.style_vectors.shape[0]})"
            )

        self.net_g: Union[SynthesizerTrn, SynthesizerTrnJPExtra, None] = None

    def load_net_g(self):
        self.net_g = get_net_g(
            model_path=self.model_path,
            version=self.hps.version,
            device=self.device,
            hps=self.hps,
        )

    def get_style_vector(self, style_id: int, weight: float = 1.0) -> np.ndarray:
        mean = self.style_vectors[0]
        style_vec = self.style_vectors[style_id]
        style_vec = mean + (style_vec - mean) * weight
        return style_vec

    def get_style_vector_from_audio(
        self, audio_path: str, weight: float = 1.0
    ) -> np.ndarray:
        from style_gen import get_style_vector

        xvec = get_style_vector(audio_path)
        mean = self.style_vectors[0]
        xvec = mean + (xvec - mean) * weight
        return xvec

    def infer(
        self,
        text: str,
        language: str = "JP",
        sid: int = 0,
        reference_audio_path: Optional[str] = None,
        sdp_ratio: float = DEFAULT_SDP_RATIO,
        noise: float = DEFAULT_NOISE,
        noisew: float = DEFAULT_NOISEW,
        length: float = DEFAULT_LENGTH,
        line_split: bool = DEFAULT_LINE_SPLIT,
        split_interval: float = DEFAULT_SPLIT_INTERVAL,
        assist_text: Optional[str] = None,
        assist_text_weight: float = DEFAULT_ASSIST_TEXT_WEIGHT,
        use_assist_text: bool = False,
        style: str = DEFAULT_STYLE,
        style_weight: float = DEFAULT_STYLE_WEIGHT,
        given_tone: Optional[list[int]] = None,
    ) -> tuple[int, np.ndarray]:
        logger.info(f"Start generating audio data from text:\n{text}")
        if language != "JP" and self.hps.version.endswith("JP-Extra"):
            raise ValueError(
                "The model is trained with JP-Extra, but the language is not JP"
            )
        if reference_audio_path == "":
            reference_audio_path = None
        if assist_text == "" or not use_assist_text:
            assist_text = None

        if self.net_g is None:
            self.load_net_g()
        if reference_audio_path is None:
            style_id = self.style2id[style]
            style_vector = self.get_style_vector(style_id, style_weight)
        else:
            style_vector = self.get_style_vector_from_audio(
                reference_audio_path, style_weight
            )
        if not line_split:
            with torch.no_grad():
                audio = infer(
                    text=text,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise,
                    noise_scale_w=noisew,
                    length_scale=length,
                    sid=sid,
                    language=language,
                    hps=self.hps,
                    net_g=self.net_g,
                    device=self.device,
                    assist_text=assist_text,
                    assist_text_weight=assist_text_weight,
                    style_vec=style_vector,
                    given_tone=given_tone,
                )
        else:
            texts = text.split("\n")
            texts = [t for t in texts if t != ""]
            audios = []
            with torch.no_grad():
                for i, t in enumerate(texts):
                    audios.append(
                        infer(
                            text=t,
                            sdp_ratio=sdp_ratio,
                            noise_scale=noise,
                            noise_scale_w=noisew,
                            length_scale=length,
                            sid=sid,
                            language=language,
                            hps=self.hps,
                            net_g=self.net_g,
                            device=self.device,
                            assist_text=assist_text,
                            assist_text_weight=assist_text_weight,
                            style_vec=style_vector,
                        )
                    )
                    if i != len(texts) - 1:
                        audios.append(np.zeros(int(44100 * split_interval)))
                audio = np.concatenate(audios)
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                audio = convert_to_16_bit_wav(audio)
        logger.info("Audio data generated successfully")
        return (self.hps.data.sampling_rate, audio)


class ModelHolder:
    def __init__(self, root_dir: str, device: str):
        self.root_dir: str = root_dir
        self.device: str = device
        self.model_files_dict: Dict[str, List[str]] = {}
        self.current_model: Optional[Model] = None
        self.model_names: List[str] = []
        self.models: List[Model] = []
        self.refresh()

    def refresh(self):
        self.model_files_dict = {}
        self.model_names = []
        self.current_model = None
        model_dirs = [
            d
            for d in os.listdir(self.root_dir)
            if os.path.isdir(os.path.join(self.root_dir, d))
        ]
        for model_name in model_dirs:
            model_dir = os.path.join(self.root_dir, model_name)
            model_files = [
                os.path.join(model_dir, f)
                for f in os.listdir(model_dir)
                if f.endswith(".pth") or f.endswith(".pt") or f.endswith(".safetensors")
            ]
            if len(model_files) == 0:
                logger.warning(
                    f"No model files found in {self.root_dir}/{model_name}, so skip it"
                )
                continue
            self.model_files_dict[model_name] = model_files
            self.model_names.append(model_name)

    def load_model_gr(
        self, model_name: str, model_path: str
    ) -> tuple[gr.Dropdown, gr.Button, gr.Dropdown]:
        if model_name not in self.model_files_dict:
            raise ValueError(f"Model `{model_name}` is not found")
        if model_path not in self.model_files_dict[model_name]:
            raise ValueError(f"Model file `{model_path}` is not found")
        if (
            self.current_model is not None
            and self.current_model.model_path == model_path
        ):
            # Already loaded
            speakers = list(self.current_model.spk2id.keys())
            styles = list(self.current_model.style2id.keys())
            return (
                gr.Dropdown(choices=styles, value=styles[0]),
                gr.Button(interactive=True, value="音声合成"),
                gr.Dropdown(choices=speakers, value=speakers[0]),
            )
        self.current_model = Model(
            model_path=model_path,
            config_path=os.path.join(self.root_dir, model_name, "config.json"),
            style_vec_path=os.path.join(self.root_dir, model_name, "style_vectors.npy"),
            device=self.device,
        )
        speakers = list(self.current_model.spk2id.keys())
        styles = list(self.current_model.style2id.keys())
        return (
            gr.Dropdown(choices=styles, value=styles[0]),
            gr.Button(interactive=True, value="音声合成"),
            gr.Dropdown(choices=speakers, value=speakers[0]),
        )

    def update_model_files_gr(self, model_name: str) -> gr.Dropdown:
        model_files = self.model_files_dict[model_name]
        return gr.Dropdown(choices=model_files, value=model_files[0])

    def update_model_names_gr(self) -> tuple[gr.Dropdown, gr.Dropdown, gr.Button]:
        self.refresh()
        initial_model_name = self.model_names[0]
        initial_model_files = self.model_files_dict[initial_model_name]
        return (
            gr.Dropdown(choices=self.model_names, value=initial_model_name),
            gr.Dropdown(choices=initial_model_files, value=initial_model_files[0]),
            gr.Button(interactive=False),  # For tts_button
        )