Spaces:
Sleeping
Sleeping
File size: 2,161 Bytes
59d3adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import fal_client
import pandas as pd
from prompt_gen import prompt_gen
import requests
import os
nv_prompt_file = pd.read_excel('汉服-女词库.xlsx')
na_prompt_file = pd.read_excel('汉服-男词库.xlsx')
nv_prompt = nv_prompt_file.to_string(index=False)
na_prompt = na_prompt_file.to_string(index=False)
def cloth_gen(advice, gender):
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
if gender == "男":
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NA.safetensors"
else:
lora_path = "https://huggingface.co/PPSharks/PPSharksModels/resolve/main/NV.safetensors"
prompt = prompt_gen(advice, gender)
prompt_start = prompt.find("Prompt")
if prompt_start != -1:
prompt = prompt[prompt_start + len("Prompt"):].strip()
else:
print("No prompt found.")
handler = fal_client.submit(
"fal-ai/fast-sdxl",
arguments={
"prompt": prompt,
"negative_prompt": "face, male, female, people, person, man, woman, Multiple clothes, cartoon, illustration, animation.",
"image_size": "portrait_4_3",
"num_inference_steps": 28,
"guidance_scale": 7.5,
"num_images": 6,
"loras": [{"path": lora_path, "scale": 0.7}],
"embeddings": [],
"safety_checker_version": "v1",
"format": "jpeg"
},
)
request_id = handler.request_id
result = fal_client.result("fal-ai/fast-sdxl", request_id)
cloth_image = []
save_directory = "downloads"
image_index = 1
for image in result['images']:
response = requests.get(image['url'])
if response.status_code == 200:
filename = os.path.join(save_directory, f"gen_cloth_{image_index}.jpeg")
cloth_image.append(filename)
with open(filename, 'wb') as f:
f.write(response.content)
image_index += 1
else:
print(f"Failed to download image from {image['url']}")
return cloth_image
# cloth_gen() |