Spaces:
Sleeping
Sleeping
File size: 4,626 Bytes
ca2592c c33d981 ca2592c b2a5e86 ca2592c 8868222 ca2592c c33d981 ca2592c a3e3b16 ca2592c 8868222 ca2592c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
from peft import PeftConfig, PeftModel
from transformers import AutoTokenizer, AutoModelForTokenClassification, RobertaTokenizerFast
import nltk
import re
from commafixer.src.comma_fixer_interface import CommaFixerInterface
class CommaFixer(CommaFixerInterface):
"""
A wrapper class for the fine-tuned comma fixer model.
"""
def __init__(self):
self.id2label = {0: 'O', 1: 'B-COMMA'}
self.label2id = {'O': 0, 'B-COMMA': 1}
self.model, self.tokenizer = self._load_peft_model()
def fix_commas(self, s: str) -> str:
"""
The main method for fixing commas using the fine-tuned model.
In the future we should think about batching the calls to it, for now it processes requests string by string.
:param s: A string with commas to fix, without length restrictions.
However, if the string is longer than the length limit (512 tokens), some whitespaces might be trimmed.
Example: comma_fixer.fix_commas("One two thre, and four!")
:return: A string with commas fixed, example: "One, two, thre and four!"
"""
s_no_commas = re.sub(r'\s*,', '', s)
tokenized = self.tokenizer(s_no_commas, return_tensors='pt', return_offsets_mapping=True, return_length=True)
# If text too long, split into sentences and fix commas separately.
# TODO this is slow, we should think about joining them until length, or maybe a length limit to avoid
# stalling the whole service
if tokenized['length'][0] > self.tokenizer.model_max_length:
return ' '.join(self.fix_commas(sentence) for sentence in nltk.sent_tokenize(s))
logits = self.model(input_ids=tokenized['input_ids'], attention_mask=tokenized['attention_mask']).logits
labels = [self.id2label[tag_id.item()] for tag_id in logits.argmax(dim=2).flatten()]
return _fix_commas_based_on_labels_and_offsets(labels, s_no_commas, tokenized['offset_mapping'][0])
def _load_peft_model(self, model_name="klasocki/roberta-large-lora-ner-comma-fixer") -> tuple[
PeftModel, RobertaTokenizerFast]:
"""
Creates the huggingface model and tokenizer.
Can also be used for pre-downloading the model and the tokenizer.
:param model_name: Name of the model on the huggingface hub.
:return: A model with the peft adapter injected and weights merged, and the tokenizer.
"""
config = PeftConfig.from_pretrained(model_name)
inference_model = AutoModelForTokenClassification.from_pretrained(
config.base_model_name_or_path, num_labels=len(self.id2label), id2label=self.id2label,
label2id=self.label2id
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(inference_model, model_name)
model = model.merge_and_unload() # Join LoRa matrices with the main model for faster inference
# TODO batch, and move to CUDA if available
return model.eval(), tokenizer
def _fix_commas_based_on_labels_and_offsets(
labels: list[str],
original_s: str,
offset_map: list[tuple[int, int]]
) -> str:
"""
This function returns the original string with only commas fixed, based on the predicted labels from the main
model and the offsets from the tokenizer.
:param labels: Predicted labels for the tokens.
Should already be converted to string, since we will look for B-COMMA tags.
:param original_s: The original string, used to preserve original spacing and punctuation.
:param offset_map: List of offsets in the original string, we will only use the second integer of each pair
indicating where the token ended originally in the string.
:return: The string with commas fixed, and everything else intact.
"""
result = original_s
commas_inserted = 0
for i, label in enumerate(labels):
current_offset = offset_map[i][1] + commas_inserted
if _should_insert_comma(label, result, current_offset):
result = result[:current_offset] + ',' + result[current_offset:]
commas_inserted += 1
return result
def _should_insert_comma(label, result, current_offset) -> bool:
# Only insert commas for the final token of a word, that is, if next word starts with a space.
# TODO perhaps for low confidence tokens, we should use the original decision of the user in the input?
return label == 'B-COMMA' and result[current_offset].isspace()
if __name__ == "__main__":
CommaFixer() # to pre-download the model and tokenizer
|