Spaces:
Sleeping
Sleeping
from selenium import webdriver | |
from selenium.webdriver.common.by import By | |
from selenium.webdriver.common.keys import Keys | |
from bs4 import BeautifulSoup | |
import time | |
# !pip install tensorflow tensorflow-hub | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import numpy as np | |
# !pip install jellyfish | |
import jellyfish | |
# Load the pre-trained Universal Sentence Encoder | |
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") | |
def calculate_jaro_similarity(str1, str2): | |
jaro_similarity = jellyfish.jaro_distance(str1, str2) | |
return jaro_similarity | |
def most_similar_sentence(target_topic, labels_list): | |
# Encode the context sentence and all sentences in the list | |
context_embedding = embed([target_topic])[0] | |
sentence_embeddings = embed(labels_list) | |
# Calculate cosine similarities between the context sentence and each sentence in the list | |
similarities = np.inner(context_embedding, sentence_embeddings) | |
# Find the index of the most similar sentence | |
most_similar_index = np.argmax(similarities) | |
return labels_list[most_similar_index], similarities[most_similar_index], most_similar_index | |
def search_wikipedia(query, driver): | |
# Go to Wikipedia's main page | |
driver.get("https://www.wikipedia.org/") | |
# Find the search bar using its name | |
search_bar = driver.find_element(By.NAME, "search") | |
# Send the query to the search bar and hit Enter | |
search_bar.send_keys(query) | |
search_bar.send_keys(Keys.RETURN) | |
return driver | |
def get_topic_context(driver): | |
# Find the first paragraph of the main article | |
first_paragraph = driver.find_element(By.CSS_SELECTOR, "div.mw-parser-output > p:not(.mw-empty-elt)").text | |
context_sentence = first_paragraph.split(". ")[0] | |
# print(context_sentence) | |
return context_sentence | |
def search_wikipedia(query, driver): | |
# Go to Wikipedia's main page | |
driver.get("https://www.wikipedia.org/") | |
# Find the search bar using its name | |
search_bar = driver.find_element(By.NAME, "search") | |
# Send the query to the search bar and hit Enter | |
search_bar.send_keys(query) | |
search_bar.send_keys(Keys.RETURN) | |
return driver | |
def get_topic_context(driver): | |
# Find the first paragraph of the main article | |
first_paragraph = driver.find_element(By.CSS_SELECTOR, "div.mw-parser-output > p:not(.mw-empty-elt)").text | |
context_sentence = first_paragraph.split(". ")[0] | |
# print(context_sentence) | |
return context_sentence | |
def play_wiki_game(starting_topic: str, target_topic: str, limit: int = 100): | |
##### Setup Chrome options | |
chrome_options = webdriver.ChromeOptions() | |
chrome_options.add_argument("--headless") # Ensure GUI is off | |
chrome_options.add_argument("--no-sandbox") | |
chrome_options.add_argument("--disable-dev-shm-usage") | |
driver = webdriver.Chrome(options = chrome_options) | |
topic = starting_topic | |
num_pages = 0 | |
used_topics = [] | |
used_links = [] | |
start_time = time.time() | |
### BEGIN ### | |
print("-" * 150) | |
print(f"\nStarting!\n") | |
print("-" * 150) | |
driver = search_wikipedia(starting_topic, driver) | |
used_links.append(driver.current_url) | |
while True: | |
# increment the page tracking by 1 for each new page | |
num_pages += 1 | |
# if not the first page, navigate to the new page | |
if num_pages > 1: | |
driver.get(next_link) | |
context_sentence = get_topic_context(driver) | |
links_texts = [] | |
current_url = driver.current_url | |
current_url_suffix = str(current_url).split("/")[-1] | |
### Use BeautifulSoup and Requests instead of Selenium for link extraction | |
current_page = driver.page_source # html from Selenium instead of BeautifulSoup | |
soup = BeautifulSoup(current_page, 'html.parser') | |
links = soup.find_all('a') | |
# Iterate through the links and extract their URLs | |
for link in links: | |
link_url = link.get('href') | |
if link_url and link_url.startswith("/wiki/"): | |
link_url = "https://en.wikipedia.org" + link_url | |
link_text = link.text.strip() # Get the text and remove leading/trailing spaces | |
# make sure they are both not None | |
if link_text and current_url_suffix not in link_url: | |
if link_url not in used_links and link_text not in used_topics: | |
# eliminates topic duplicates, non-wiki links, and wiki-help pages (non-content pages) | |
if topic.lower() not in link_url.lower() and "en.wikipedia.org/wiki/" in link_url and ":" not in "".join(link_url.split("/")[1:]) and "Main_Page" != str(link_url.split("/")[-1]): | |
links_texts.append((link_url, link_text)) | |
best_label, best_score, loc_idx = most_similar_sentence(target_topic = target_topic, labels_list = [text for link, text in links_texts]) | |
print(f"\nPage: {num_pages}") | |
print(f"Current topic: '{topic.title()}'") | |
print(f"Current URL: '{current_url}'") | |
print(f"Current Topic Context: '{context_sentence}'") | |
print(f"Next topic: '{best_label.title()}'. Semantic similarity to '{target_topic.title()}': {round((best_score * 100), 2)}%") | |
next_link, topic = links_texts[loc_idx] | |
# print(next_link) | |
# if target_topic.lower() in topic.lower():# or best_score > float(0.85): | |
if target_topic.lower() == topic.lower() or calculate_jaro_similarity(target_topic.lower(), topic.lower()) > 0.9 or best_score > float(0.90): # if topic text is identical or at least 90% the same spelling | |
print("\n" + "-" * 150) | |
print(f"\nFrom '{starting_topic.title()}', to '{target_topic.title()}' in {num_pages} pages, {round(time.time() - start_time, 2)} seconds!") | |
print(f"Starting topic: '{starting_topic.title()}': '{used_links[0]}'") | |
print(f"Target topic: '{target_topic.title()}': '{used_links[-1]}'\n") | |
print("-" * 150) | |
break | |
##### ADD DRAMATIC DELAY HERE ##### | |
# time.sleep(0.5) | |
# time.sleep(10) | |
if num_pages == limit: | |
print("\n" + "-" * 150) | |
print(f"\nUnfortunately, the model couldn't get from '{starting_topic.title()}', to '{target_topic.title()}' in {num_pages} pages or less.") | |
print(f"In {round(time.time() - start_time, 2)} seconds, it got from '{starting_topic.title()}': '{used_links[0]}', to '{target_topic.title()}': '{used_links[-1]}'") | |
print(f"\nTry a different combination to see if it can do it!\n") | |
print("-" * 150) | |
break | |
used_links.append(next_link) | |
used_topics.append(topic) | |
driver.quit() | |
###### Example | |
# starting_topic = "soulja boy" | |
# target_topic = "test" | |
# play_wiki_game(starting_topic = starting_topic, target_topic = target_topic, limit = 50) |