Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, TFGPT2LMHeadModel | |
review_model = TFGPT2LMHeadModel.from_pretrained("kmkarakaya/turkishReviews-ds") | |
review_tokenizer = AutoTokenizer.from_pretrained("kmkarakaya/turkishReviews-ds") | |
def generate_review(prompt): | |
if prompt=="": | |
prompt = " " | |
input_ids = review_tokenizer.encode(prompt, return_tensors='tf') | |
context_length = 40 | |
output = review_model.generate( | |
input_ids, | |
do_sample=True, | |
max_length=context_length, | |
top_k=10, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
return(review_tokenizer.decode(output[0], skip_special_tokens=True)) | |
title="Turkish Review Generator: A GPT2 based Text Generator Trained with a Custom Dataset" | |
description= """Generate a review in Turkish by providing a prompt or selecting an example prompt below. | |
Generation takes <b>15-20 seconds</b> on average. | |
Enjoy! | |
![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Auto_Review_Generation_in_Turkish) | |
""" | |
#<p>NOTE: Examples can sometimes generate ERROR. When you see ERROR on the screen <b>just click SUBMIT</b>. Model will generate text in 15-20 secs.</p> | |
article = """<p style='text-align: center'>On YouTube:</p> | |
<p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v9d9w-L0S8XUXXdNks7vPBL' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p> | |
<p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v8aajw6m9MRNbAAbL63flKD' target='_blank'>Hugging Face kütüphanesini kullanarak bir GPT2 Transformer Dil Modelini Kendi Veri Setimizle nasıl eğitip kullanabiliriz? (in Turkish)</a></p> | |
<p style='text-align: center'>On Medium:</p> | |
<p style='text-align: center'><a href='https://medium.com/deep-learning-with-keras/how-to-train-a-hugging-face-causal-language-model-from-scratch-8d08d038168f' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p>""" | |
examples=["Bir hafta önce aldığım cep telefonu çalışmıyor.", | |
"Tatil için yaptığım rezervasyonu iptal edemiyorum.", | |
"Geçen ay sipariş verdiğim ayakkabı gelmedi.", | |
"Abone olduğum spor salonu kapandı.", | |
"Buzdolabından garip sesler geliyor.", | |
"Otel tam bir fiyasko."] | |
demo = gr.Interface(fn=generate_review, | |
inputs= gr.Textbox(lines=5, label="Prompt", placeholder="enter or select a prompt below..."), | |
outputs= gr.Textbox(lines=5, label="Generated Review", placeholder="genereated review will be here..."), | |
examples=examples, | |
title=title, | |
description= description, | |
article = article, | |
#cache_examples = False | |
allow_flagging="manual", | |
flagging_options=["good","moderate", "non-sense", ] | |
#flagging_dir='./flags' | |
) | |
demo.launch() |