Spaces:
Runtime error
Runtime error
File size: 2,153 Bytes
fa9917c c7baec5 fa9917c 9ff3cc1 df18eaf 9ff3cc1 df18eaf 17ee3d5 7b4da08 7fcd0f7 d91019d 17ee3d5 b4b2d15 816ad81 e31ea1f 77e17ee 918502d 2d548f2 72ea02e 69eadf1 45d0f71 7c47179 be4ba0f 45d0f71 ef34b99 45d0f71 5d127b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import torch
from transformers import pipeline
app_title = "Portuguese Hate Speech Detection 🤬"
app_description = """
This app detects Hate Speech on Portuguese text. You can either introduce your own sentences by filling in the text box or click on one of the examples provided below.
"""
app_examples = [
["As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano 😂😂", "knowhate/HateBERTimbau-youtube"],
["Vamo-nos unir para criar um mundo mais inclusivo e tolerante.", "knowhate/HateBERTimbau-twitter"],
["Isso pulhiticos merdosos, continuem a importar lixo, até Portugal deixar de ser Portugal.", "knowhate/HateBERTimbau-yt-tt"],
["Eu admiro muito a coragem e a determinação da minha colega de trabalho.", "knowhate/HateBERTimbau"],
["Vai pá puta que te pariu seu paneleiro do caralho, virgem ofendida", "knowhate/HateBERTimbau-youtube"],
["O tempo está ensolarado hoje, perfeito para um passeio no parque.", "knowhate/HateBERTimbau-twitter"]
]
model_list = [
"knowhate/HateBERTimbau",
"knowhate/HateBERTimbau-youtube",
"knowhate/HateBERTimbau-twitter",
"knowhate/HateBERTimbau-yt-tt",
]
def predict(text, chosen_model):
# Initialize the pipeline with the chosen model
model_pipeline = pipeline("text-classification", model=chosen_model)
result = model_pipeline(text)
predicted_label = result[0]['label']
predicted_score = result[0]['score']
non_predicted_label = "Hate Speech" if predicted_label == "Non Hate Speech" else "Non Hate Speech"
non_predicted_score = 1 - predicted_score
scores_dict = {
predicted_label: predicted_score,
non_predicted_label: non_predicted_score
}
return scores_dict#, predicted_label
inputs = [
gr.Textbox(label="Text", value= app_examples[0][0]),
gr.Dropdown(label="Model", choices=model_list, value=model_list[2])
]
outputs = [
gr.Label(label="Result"),
]
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
description=app_description, examples=app_examples).launch() |