Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import pipeline | |
app_title = "Portuguese Hate Speech Detection (NFAA)" | |
app_description = """ | |
This app is the culmination of the kNOwHATE consortium project, which aimed to tackle Online Hate Speech in the Portuguese comunity. It serves as an user-friendly interface to classify text and identify instances of Hate Speech. | |
This app leverages state-of-the-art Natural Language Processing models developed in the scope of this project to classify harmful text. | |
Select a model from the dropdown menu and input your text to see the classification results. Explore the examples of Hate Speech and Non-Hate Speech offered, and join us in fostering a safer and more respectful online community. | |
For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate). | |
""" | |
app_examples = [ | |
["As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano 😂😂", "knowhate/HateBERTimbau-youtube"], | |
["Vamo-nos unir para criar um mundo mais inclusivo e tolerante.", "knowhate/HateBERTimbau-twitter"], | |
["Isso pulhiticos merdosos, continuem a importar lixo, até Portugal deixar de ser Portugal.", "knowhate/HateBERTimbau-yt-tt"], | |
["Eu admiro muito a coragem e a determinação da minha colega de trabalho.", "knowhate/HateBERTimbau-twitter"], | |
["Vai pá puta que te pariu seu paneleiro do caralho, virgem ofendida", "knowhate/HateBERTimbau-youtube"], | |
["O tempo está ensolarado hoje, perfeito para um passeio no parque.", "knowhate/HateBERTimbau-yt-tt"] | |
] | |
model_list = [ | |
"knowhate/HateBERTimbau-youtube", | |
"knowhate/HateBERTimbau-twitter", | |
"knowhate/HateBERTimbau-yt-tt", | |
] | |
def predict(text, chosen_model): | |
# Initialize the pipeline with the chosen model | |
model_pipeline = pipeline("text-classification", model=chosen_model) | |
result = model_pipeline(text) | |
predicted_label = result[0]['label'] | |
predicted_score = result[0]['score'] | |
non_predicted_label = "Hate Speech" if predicted_label == "Non Hate Speech" else "Non Hate Speech" | |
non_predicted_score = 1 - predicted_score | |
scores_dict = { | |
predicted_label: predicted_score, | |
non_predicted_label: non_predicted_score | |
} | |
return scores_dict | |
inputs = [ | |
gr.Textbox(label="Text", value= app_examples[0][0]), | |
gr.Dropdown(label="Model", choices=model_list, value=model_list[2]) | |
] | |
outputs = [ | |
gr.Label(label="Result"), | |
] | |
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title, | |
description=app_description, examples=app_examples, theme=gr.themes.Base(primary_hue="red")).launch() |