Spaces:
Runtime error
Runtime error
Create app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
app_title = "Portuguese Hate Speech Detection"
|
6 |
+
|
7 |
+
app_description = """ click on one of the examples provided below.
|
8 |
+
"""
|
9 |
+
This app detects hate speech on Portuguese text using multiple models. You can either introduce your own sentences by filling in "Text" or
|
10 |
+
|
11 |
+
app_examples = [
|
12 |
+
["as pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano kkk"],
|
13 |
+
["ontem encontrei-me com um amigo meu e tivemos uma conversa agradável"],
|
14 |
+
]
|
15 |
+
|
16 |
+
output_textbox_component_description = """
|
17 |
+
This box will display the hate speech detection results based on the average score of multiple models.
|
18 |
+
"""
|
19 |
+
|
20 |
+
output_json_component_description = { "breakdown": """
|
21 |
+
This box presents a detailed breakdown of the evaluation for each model.
|
22 |
+
"""}
|
23 |
+
|
24 |
+
short_score_descriptions = {
|
25 |
+
0: "Non Hate Speech",
|
26 |
+
1: "Hate Speech"
|
27 |
+
}
|
28 |
+
|
29 |
+
score_descriptions = {
|
30 |
+
0: "This text is not Hate Speech.",
|
31 |
+
1: "This text is Hate Speech.",
|
32 |
+
}
|
33 |
+
|
34 |
+
model_list = [
|
35 |
+
"knowhate/HateBERTimbau",
|
36 |
+
"knowhate/HateBERTimbau-youtube",
|
37 |
+
"knowhate/HateBERTimbau-twitter",
|
38 |
+
"knowhate/HateBERTimbau-yt-tt",
|
39 |
+
]
|
40 |
+
|
41 |
+
user_friendly_name = {
|
42 |
+
"knowhate/HateBERTimbau": "HateBERTimbau (Original)",
|
43 |
+
"knowhate/HateBERTimbau-youtube": "HateBERTimbau (YouTube)",
|
44 |
+
"knowhate/HateBERTimbau-twitter": "HateBERTimbau (Twitter)",
|
45 |
+
"knowhate/HateBERTimbau-yt-tt": "HateBERTimbau (YouTube + Twitter)",
|
46 |
+
}
|
47 |
+
|
48 |
+
reverse_user_friendly_name = { v:k for k,v in user_friendly_name.items() }
|
49 |
+
|
50 |
+
user_friendly_name_list = list(user_friendly_name.values())
|
51 |
+
|
52 |
+
model_array = []
|
53 |
+
|
54 |
+
for model_name in model_list:
|
55 |
+
row = {}
|
56 |
+
row["name"] = model_name
|
57 |
+
row["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
row["model"] = AutoModelForSequenceClassification.from_pretrained(model_name)
|
59 |
+
model_array.append(row)
|
60 |
+
|
61 |
+
def most_frequent(array):
|
62 |
+
occurence_count = Counter(array)
|
63 |
+
return occurence_count.most_common(1)[0][0]
|
64 |
+
|
65 |
+
|
66 |
+
def predict(s1, chosen_model):
|
67 |
+
if not chosen_model:
|
68 |
+
chosen_model = user_friendly_name_list[0]
|
69 |
+
scores = {}
|
70 |
+
full_chosen_model_name = reverse_user_friendly_name[chosen_model]
|
71 |
+
for row in model_array:
|
72 |
+
name = row["name"]
|
73 |
+
if name != full_chosen_model_name:
|
74 |
+
continue
|
75 |
+
else:
|
76 |
+
tokenizer = row["tokenizer"]
|
77 |
+
model = row["model"]
|
78 |
+
model_input = tokenizer(*([s1],), padding=True, return_tensors="pt")
|
79 |
+
with torch.no_grad():
|
80 |
+
output = model(**model_input)
|
81 |
+
logits = output[0][0].detach().numpy()
|
82 |
+
logits = softmax(logits).tolist()
|
83 |
+
break
|
84 |
+
def get_description(idx):
|
85 |
+
description = score_descriptions[idx]
|
86 |
+
description_pt = score_descriptions_pt[idx]
|
87 |
+
final_description = description + "\n \n" + description_pt
|
88 |
+
return final_description
|
89 |
+
|
90 |
+
max_pos = logits.index(max(logits))
|
91 |
+
markdown_description = get_description(max_pos)
|
92 |
+
scores = { short_score_descriptions[k]:v for k,v in enumerate(logits) }
|
93 |
+
|
94 |
+
return scores, markdown_description
|
95 |
+
|
96 |
+
|
97 |
+
inputs = [
|
98 |
+
gr.Textbox(label="Text", value=app_examples[0][0]),
|
99 |
+
gr.Dropdown(label="Model", choices=user_friendly_name_list, value=user_friendly_name_list[0])
|
100 |
+
]
|
101 |
+
|
102 |
+
outputs = [
|
103 |
+
gr.Label(label="Result"),
|
104 |
+
gr.Markdown(),
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
|
109 |
+
description=app_description,
|
110 |
+
examples=app_examples,
|
111 |
+
article = article_string).launch()
|